A large-scale (194k), Multiple-Choice Question Answering (MCQA) dataset designed to address realworld medical entrance exam questions.

Overview

MedMCQA

MedMCQA : A Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering

A large-scale, Multiple-Choice Question Answering (MCQA) dataset designed to address realworld medical entrance exam questions.

The MedMCQA task can be formulated as X = {Q, O} where Q represents the questions in the text, O represents the candidate options, multiple candidate answers are given for each question O = {O1, O2, ..., On}. The goal is to select the single or multiple answers from the option set.

If you would like to use the data or code, please cite the paper:

@InProceedings{pmlr-v174-pal22a,
  title = 	 {MedMCQA: A Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering},
  author =       {Pal, Ankit and Umapathi, Logesh Kumar and Sankarasubbu, Malaikannan},
  booktitle = 	 {Proceedings of the Conference on Health, Inference, and Learning},
  pages = 	 {248--260},
  year = 	 {2022},
  editor = 	 {Flores, Gerardo and Chen, George H and Pollard, Tom and Ho, Joyce C and Naumann, Tristan},
  volume = 	 {174},
  series = 	 {Proceedings of Machine Learning Research},
  month = 	 {07--08 Apr},
  publisher =    {PMLR},
  pdf = 	 {https://proceedings.mlr.press/v174/pal22a/pal22a.pdf},
  url = 	 {https://proceedings.mlr.press/v174/pal22a.html},
  abstract = 	 {This paper introduces MedMCQA, a new large-scale, Multiple-Choice Question Answering (MCQA) dataset designed to address real-world medical entrance exam questions. More than 194k high-quality AIIMS & NEET PG entrance exam MCQs covering 2.4k healthcare topics and 21 medical subjects are collected with an average token length of 12.77 and high topical diversity. Each sample contains a question, correct answer(s), and other options which requires a deeper language understanding as it tests the 10+ reasoning abilities of a model across a wide range of medical subjects & topics. A detailed explanation of the solution, along with the above information, is provided in this study.}
}

GitHub license GitHub commit PRs Welcome

Dataset Description

Links
Homepage: https://medmcqa.github.io
Repository: https://github.com/medmcqa/medmcqa
Paper: https://arxiv.org/abs/2203.14371
Leaderboard: https://paperswithcode.com/dataset/medmcqa
Point of Contact: Aaditya Ura, Logesh

Dataset Summary

MedMCQA is a large-scale, Multiple-Choice Question Answering (MCQA) dataset designed to address real-world medical entrance exam questions.

MedMCQA has more than 194k high-quality AIIMS & NEET PG entrance exam MCQs covering 2.4k healthcare topics and 21 medical subjects are collected with an average token length of 12.77 and high topical diversity.

Each sample contains a question, correct answer(s), and other options which require a deeper language understanding as it tests the 10+ reasoning abilities of a model across a wide range of medical subjects & topics. A detailed explanation of the solution, along with the above information, is provided in this study.

MedMCQA provides an open-source dataset for the Natural Language Processing community. It is expected that this dataset would facilitate future research toward achieving better QA systems. The dataset contains questions about the following topics:

  • Anesthesia
  • Anatomy
  • Biochemistry
  • Dental
  • ENT
  • Forensic Medicine (FM)
  • Obstetrics and Gynecology (O&G)
  • Medicine
  • Microbiology
  • Ophthalmology
  • Orthopedics
  • Pathology
  • Pediatrics
  • Pharmacology
  • Physiology
  • Psychiatry
  • Radiology
  • Skin
  • Preventive & Social Medicine (PSM)
  • Surgery

Requirements

pip3 install -r requirements.txt

Data Download and Preprocessing

download the data from below link

data : https://drive.google.com/uc?export=download&id=15VkJdq5eyWIkfb_aoD3oS8i4tScbHYky

Experiments code

To run the experiments mentioned in the paper, follow the below steps

  • Clone the repo
  • Install the dependencies

pip3 install -r requirements.txt

  • Download the data from google drive link
  • Unzip the data
  • run below command with the data path

python3 train.py --model bert-base-uncased --dataset_folder_name "/content/medmcqa_data/"

Supported Tasks and Leaderboards

multiple-choice-QA, open-domain-QA: The dataset can be used to train a model for multi-choice questions answering, open domain questions answering. Questions in these exams are challenging and generally require deeper domain and language understanding as it tests the 10+ reasoning abilities across a wide range of medical subjects & topics.

Languages

The questions and answers are available in English.

Dataset Structure

Data Instances

{
    "question":"A 40-year-old man presents with 5 days of productive cough and fever. Pseudomonas aeruginosa is isolated from a pulmonary abscess. CBC shows an acute effect characterized by marked leukocytosis (50,000 mL) and the differential count reveals a shift to left in granulocytes. Which of the following terms best describes these hematologic findings?",
    "exp": "Circulating levels of leukocytes and their precursors may occasionally reach very high levels (>50,000 WBC mL). These extreme elevations are sometimes called leukemoid reactions because they are similar to the white cell counts observed in leukemia, from which they must be distinguished. The leukocytosis occurs initially because of the accelerated release of granulocytes from the bone marrow (caused by cytokines, including TNF and IL-1) There is a rise in the number of both mature and immature neutrophils in the blood, referred to as a shift to the left. In contrast to bacterial infections, viral infections (including infectious mononucleosis) are characterized by lymphocytosis Parasitic infestations and certain allergic reactions cause eosinophilia, an increase in the number of circulating eosinophils. Leukopenia is defined as an absolute decrease in the circulating WBC count.",
    "cop":1,
    "opa":"Leukemoid reaction",
    "opb":"Leukopenia",
    "opc":"Myeloid metaplasia",
    "opd":"Neutrophilia",
    "subject_name":"Pathology",
    "topic_name":"Basic Concepts and Vascular changes of Acute Inflammation",
    "id":"4e1715fe-0bc3-494e-b6eb-2d4617245aef",
    "choice_type":"single"
}

Data Fields

  • id : a string question identifier for each example
  • question : question text (a string)
  • opa : Option A
  • opb : Option B
  • opc : Option C
  • opd : Option D
  • cop : Correct option (Answer of the question)
  • choice_type : Question is single-choice or multi-choice
  • exp : Expert's explanation of the answer
  • subject_name : Medical Subject name of the particular question
  • topic_name : Medical topic name from the particular subject

Data Splits

The goal of MedMCQA is to emulate the rigor of real word medical exams. To enable that, a predefined split of the dataset is provided. The split is by exams instead of the given questions. This also ensures the reusability and generalization ability of the models.

  • The training set of MedMCQA consists of all the collected mock & online test series.
  • The test set consists of all AIIMS PG exam MCQs (years 1991-present).
  • The development set consists of NEET PG exam MCQs (years 2001-present) to approximate real exam evaluation.

Similar questions from train , test and dev set were removed based on similarity. The final split sizes are as follow:

Train Valid Test
Question # 182,822 6,150 4,183
Vocab 94,231 11,218 10,800
Max Ques tokens 220 135 88
Max Ans tokens 38 21 25

Model Submission and Test Set Evaluation

To preserve the integrity of test results, we do not release the test set's ground-truth to the public. Instead, we require you to use the test-set to evaluate the model and send the predictions along with unique question id id in csv format to below email addresses

Example :

id Prediction (correct option)
84f328d3-fca4-422d-8fb2-19d55eb31503 2
bb85e248-b2e9-48e8-a887-67c1aff15b6d 3

aadityaura [at] gmail.com, logesh.umapathi [at] saama.com

Owner
MedMCQA
MedMCQA : A Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering
MedMCQA
L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources.

L3Cube-MahaCorpus L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources. We expand the existing Marathi monolingual

21 Dec 17, 2022
The RWKV Language Model

RWKV-LM We propose the RWKV language model, with alternating time-mix and channel-mix layers: The R, K, V are generated by linear transforms of input,

PENG Bo 877 Jan 05, 2023
Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
Research code for "What to Pre-Train on? Efficient Intermediate Task Selection", EMNLP 2021

efficient-task-transfer This repository contains code for the experiments in our paper "What to Pre-Train on? Efficient Intermediate Task Selection".

AdapterHub 26 Dec 24, 2022
HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools

HuggingSound HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools. I have no intention of building a very complex tool here.

Jonatas Grosman 247 Dec 26, 2022
Bot to connect a real Telegram user, simulating responses with OpenAI's davinci GPT-3 model.

AI-BOT Bot to connect a real Telegram user, simulating responses with OpenAI's davinci GPT-3 model.

Thempra 2 Dec 21, 2022
BERN2: an advanced neural biomedical namedentity recognition and normalization tool

BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by

DMIS Laboratory - Korea University 99 Jan 06, 2023
QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
PyTranslator é simultaneamente um editor e tradutor de texto com diversos recursos e interface feito com coração e 100% em Python

PyTranslator O Que é e para que serve o PyTranslator? PyTranslator é simultaneamente um editor e tradutor de texto em com interface gráfica que usa a

Elizeu Barbosa Abreu 1 May 12, 2022
Exploration of BERT-based models on twitter sentiment classifications

twitter-sentiment-analysis Explore the relationship between twitter sentiment of Tesla and its stock price/return. Explore the effect of different BER

Sammy Cui 2 Oct 02, 2022
Mednlp - Medical natural language parsing and utility library

Medical natural language parsing and utility library A natural language medical

Paul Landes 3 Aug 24, 2022
Behavioral Testing of Clinical NLP Models

Behavioral Testing of Clinical NLP Models This repository contains code for testing the behavior of clinical prediction models based on patient letter

Betty van Aken 2 Sep 20, 2022
Korean Simple Contrastive Learning of Sentence Embeddings using SKT KoBERT and kakaobrain KorNLU dataset

KoSimCSE Korean Simple Contrastive Learning of Sentence Embeddings implementation using pytorch SimCSE Installation git clone https://github.com/BM-K/

34 Nov 24, 2022
Grading tools for Advanced NLP (11-711)Grading tools for Advanced NLP (11-711)

Grading tools for Advanced NLP (11-711) Installation You'll need docker and unzip to use this repo. For docker, visit the official guide to get starte

Hao Zhu 2 Sep 27, 2022
Just a Basic like Language for Zeno INC

zeno-basic-language Just a Basic like Language for Zeno INC This is written in 100% python. this is basic language like language. so its not for big p

Voidy Devleoper 1 Dec 18, 2021
BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network)

BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network) BERTAC is a framework that combines a

6 Jan 24, 2022
Simple, Pythonic, text processing--Sentiment analysis, part-of-speech tagging, noun phrase extraction, translation, and more.

TextBlob: Simplified Text Processing Homepage: https://textblob.readthedocs.io/ TextBlob is a Python (2 and 3) library for processing textual data. It

Steven Loria 8.4k Dec 26, 2022
Torchrecipes provides a set of reproduci-able, re-usable, ready-to-run RECIPES for training different types of models, across multiple domains, on PyTorch Lightning.

Recipes are a standard, well supported set of blueprints for machine learning engineers to rapidly train models using the latest research techniques without significant engineering overhead.Specifica

Meta Research 193 Dec 28, 2022
This project converts your human voice input to its text transcript and to an automated voice too.

Human Voice to Automated Voice & Text Introduction: In this project, whenever you'll speak, it will turn your voice into a robot voice and furthermore

Hassan Shahzad 3 Oct 15, 2021