Official PyTorch Implementation of "AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting".

Overview

AgentFormer

This repo contains the official implementation of our paper:

AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting
Ye Yuan, Xinshuo Weng, Yanglan Ou, Kris Kitani
ICCV 2021
[website] [paper]

Overview

Loading AgentFormer Overview

Important Note

We have recently noticed a normalization bug in the code and after fixing it, the performance of our method is worse than the original numbers reported in the ICCV paper. For comparision, please use the correct numbers in the updated arXiv version.

Installation

Environment

  • Tested OS: MacOS, Linux
  • Python >= 3.7
  • PyTorch == 1.8.0

Dependencies:

  1. Install PyTorch 1.8.0 with the correct CUDA version.
  2. Install the dependencies:
    pip install -r requirements.txt
    

Datasets

  • For the ETH/UCY dataset, we already included a converted version compatible with our dataloader under datasets/eth_ucy.
  • For the nuScenes dataset, the following steps are required:
    1. Download the orignal nuScenes dataset. Checkout the instructions here.
    2. Follow the instructions of nuScenes prediction challenge. Download and install the map expansion.
    3. Run our script to obtain a processed version of the nuScenes dataset under datasets/nuscenes_pred:
      python data/process_nuscenes.py --data_root <PATH_TO_NUSCENES>
      

Pretrained Models

  • You can download pretrained models from Google Drive or BaiduYun (password: 9rvb) to reproduce the numbers in the paper.
  • Once the agentformer_models.zip file is downloaded, place it under the root folder of this repo and unzip it:
    unzip agentformer_models.zip
    
    This will place the models under the results folder. Note that the pretrained models directly correspond to the config files in cfg.

Evaluation

ETH/UCY

Run the following command to test pretrained models for the ETH dataset:

python test.py --cfg eth_agentformer --gpu 0

You can replace eth with {hotel, univ, zara1, zara2} to test other datasets in ETH/UCY. You should be able to get the numbers reported in the paper as shown in this table:

Ours ADE FDE
ETH 0.45 0.75
Hotel 0.14 0.22
Univ 0.25 0.45
Zara1 0.18 0.30
Zara2 0.14 0.24
Avg 0.23 0.39

nuScenes

Run the following command to test pretrained models for the nuScenes dataset:

python test.py --cfg nuscenes_5sample_agentformer --gpu 0

You can replace 5sample with 10sample to compute all the metrics (ADE_5, FDE_5, ADE_10, FDE_10). You should be able to get the numbers reported in the paper as shown in this table:

ADE_5 FDE_5 ADE_10 FDE_10
Ours 1.856 3.889 1.452 2.856

Training

You can train your own models with your customized configs. Here we take the ETH dataset as an example, but you can train models for other datasets with their corresponding configs. AgentFormer requires two-stage training:

  1. Train the AgentFormer VAE model (everything but the trajectory sampler):
    python train.py --cfg user_eth_agentformer_pre --gpu 0
    
  2. Once the VAE model is trained, train the AgentFormer DLow model (trajectory sampler):
    python train.py --cfg user_eth_agentformer --gpu 0
    
    Note that you need to change the pred_cfg field in user_eth_agentformer to the config you used in step 1 (user_eth_agentformer_pre) and change the pred_epoch to the VAE model epoch you want to use.

Citation

If you find our work useful in your research, please cite our paper AgentFormer:

@inproceedings{yuan2021agent,
  title={AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting},
  author={Yuan, Ye and Weng, Xinshuo and Ou, Yanglan and Kitani, Kris},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2021}
}

License

Please see the license for further details.

Owner
Ye Yuan
PhD student at Robotics Institute, CMU
Ye Yuan
Identifying Stroke Indicators Using Rough Sets

Identifying Stroke Indicators Using Rough Sets With the spirit of reproducible research, this repository contains all the codes required to produce th

Muhammad Salman Pathan 0 Jun 09, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022
Find the Heart simple Python Game

This is a simple Python game for finding a heart emoji. There is a 3 x 3 matrix in which a heart emoji resides. The location of the heart is randomized and is not revealed. The player must guess the

p.katekomol 1 Jan 24, 2022
Code for project: "Learning to Minimize Remainder in Supervised Learning".

Learning to Minimize Remainder in Supervised Learning Code for project: "Learning to Minimize Remainder in Supervised Learning". Requirements and Envi

Yan Luo 0 Jul 18, 2021
Official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th ICML Workshop on AutoML)

Automated Learning Rate Scheduler for Large-Batch Training The official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th

Kakao Brain 35 Jan 04, 2023
Namish Khanna 40 Oct 11, 2022
This is code of book "Learn Deep Learning with PyTorch"

深度学习入门之PyTorch Learn Deep Learning with PyTorch 非常感谢您能够购买此书,这个github repository包含有深度学习入门之PyTorch的实例代码。由于本人水平有限,在写此书的时候参考了一些网上的资料,在这里对他们表示敬意。由于深度学习的技术在

Xingyu Liao 2.5k Jan 04, 2023
ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection

ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection This repository contains implementation of the

Visual Understanding Lab @ Samsung AI Center Moscow 190 Dec 30, 2022
Code for the paper "Functional Regularization for Reinforcement Learning via Learned Fourier Features"

Reinforcement Learning with Learned Fourier Features State-space Soft Actor-Critic Experiments Move to the state-SAC-LFF repository. cd state-SAC-LFF

Alex Li 10 Nov 11, 2022
PyTorch Implementation of the paper Learning to Reweight Examples for Robust Deep Learning

Learning to Reweight Examples for Robust Deep Learning Unofficial PyTorch implementation of Learning to Reweight Examples for Robust Deep Learning. Th

Daniel Stanley Tan 325 Dec 28, 2022
A PyTorch implementation of the Relational Graph Convolutional Network (RGCN).

Torch-RGCN Torch-RGCN is a PyTorch implementation of the RGCN, originally proposed by Schlichtkrull et al. in Modeling Relational Data with Graph Conv

Thiviyan Singam 66 Nov 30, 2022
Line-level Handwritten Text Recognition (HTR) system implemented with TensorFlow.

Line-level Handwritten Text Recognition with TensorFlow This model is an extended version of the Simple HTR system implemented by @Harald Scheidl and

Hoàng Tùng Lâm (Linus) 72 May 07, 2022
A small tool to joint picture including gif

README 做设计的时候遇到拼接长图的情况,但是发现没有什么好用的能拼接gif的工具。 于是自己写了个gif拼接小工具。 可以自动拼接gif、png和jpg等常见格式。 效果 从上至下 从下至上 从左至右 从右至左 使用 克隆仓库 git clone https://github.com/Dels

3 Dec 15, 2021
Source code for "MusCaps: Generating Captions for Music Audio" (IJCNN 2021)

MusCaps: Generating Captions for Music Audio Ilaria Manco1 2, Emmanouil Benetos1, Elio Quinton2, Gyorgy Fazekas1 1 Queen Mary University of London, 2

Ilaria Manco 57 Dec 07, 2022
FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS

FaceAPI AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using

Vladimir Mandic 395 Dec 29, 2022
ViDT: An Efficient and Effective Fully Transformer-based Object Detector

ViDT: An Efficient and Effective Fully Transformer-based Object Detector by Hwanjun Song1, Deqing Sun2, Sanghyuk Chun1, Varun Jampani2, Dongyoon Han1,

NAVER AI 262 Dec 27, 2022
Digan - Official PyTorch implementation of Generating Videos with Dynamics-aware Implicit Generative Adversarial Networks

DIGAN (ICLR 2022) Official PyTorch implementation of "Generating Videos with Dyn

Sihyun Yu 147 Dec 31, 2022
Visual Adversarial Imitation Learning using Variational Models (VMAIL)

Visual Adversarial Imitation Learning using Variational Models (VMAIL) This is the official implementation of the NeurIPS 2021 paper. Project website

14 Nov 18, 2022
Code examples and benchmarks from the paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective"

Code For the Paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective" Author: Robert Bamler Date: 22 D

4 Nov 02, 2022
Banglore House Prediction Using Flask Server (Python)

Banglore House Prediction Using Flask Server (Python) 🌐 Links 🌐 📂 Repo In this repository, I've implemented a Machine Learning-based Bangalore Hous

Dhyan Shah 1 Jan 24, 2022