⚡ boost inference speed of T5 models by 5x & reduce the model size by 3x using fastT5.

Overview

fastt5 icon

Reduce T5 model size by 3X and increase the inference speed up to 5X.

PyPI - License example workflow PyPI PyPI - Downloads


T5 models can be used for several NLP tasks such as summarization, QA, QG, translation, text generation, and more. Sequential text generation is naturally slow, and for larger T5 models it gets even slower. fastT5 makes the T5 models inference faster by running it on onnxruntime. and it also decreases the model size by quantizing it.

fastT5 library allows you to convert a pretrained T5 model to onnx, quantizes it, and gives the model as output which is running on an onnxruntime in a single line of code. You can also customize this whole process.


Install

You can install fastT5 from PyPI:

 pip install fastt5

If you want to build from source:

git clone https://github.com/Ki6an/fastT5
cd fastT5
pip3 install -e .

Usage

The export_and_get_onnx_model() method exports the given pretrained T5 model to onnx, quantizes it and runs it on the onnxruntime with default settings. The returned model from this method supports the generate() method of huggingface.

If you don't wish to quantize the model then use quantized=False in the method.

from fastT5 import export_and_get_onnx_model
from transformers import AutoTokenizer

model_name = 't5-small'
model = export_and_get_onnx_model(model_name)

tokenizer = AutoTokenizer.from_pretrained(model_name)
t_input = "translate English to French: The universe is a dark forest."
token = tokenizer(t_input, return_tensors='pt')

tokens = model.generate(input_ids=token['input_ids'],
               attention_mask=token['attention_mask'],
               num_beams=2)

output = tokenizer.decode(tokens.squeeze(), skip_special_tokens=True)
print(output)

to run the already exported model use get_onnx_model()

you can customize the whole pipeline as shown in the below code example:

from fastT5 import (OnnxT5, get_onnx_runtime_sessions,
                    generate_onnx_representation, quantize)
from transformers import AutoTokenizer

model_or_model_path = 't5-small'

# Step 1. convert huggingfaces t5 model to onnx
onnx_model_paths = generate_onnx_representation(model_or_model_path)

# Step 2. (recommended) quantize the converted model for fast inference and to reduce model size.
quant_model_paths = quantize(onnx_model_paths)

# step 3. setup onnx runtime
model_sessions = get_onnx_runtime_sessions(quant_model_paths)

# step 4. get the onnx model
model = OnnxT5(model_or_model_path, model_sessions)

                      ...

Details

T5 is a seq2seq model (Encoder-Decoder), as it uses decoder repeatedly for inference, we can't directly export the whole model to onnx. We need to export the encoder and decoder separately.

past_key_values contain pre-computed hidden-states (key and values in the self-attention blocks and cross-attention blocks) that can be used to speed up sequential decoding.

models can only be exported with a constant number of inputs. Contrary to this, the decoder of the first step does not take past_key_values and the rest of the steps decoders do. To get around this issue, we can create two decoders: one for the first step that does not take past_key_values and another for the rest of the steps that utilize the past_key_values.

Next, we'll export all three models (encoder, decoder, init_decoder). And then quantize them, quantizing 32bit to 8bit should give the 4x memory reduction. Since there is an extra decoder the model size reduces by 3x.

Finally, we'll run the quantized model on onnx runtime.

The inference is simple as the model supports the generate() method of huggingface.

Functionalities

  • Export any pretrained T5 model to ONNX easily (with past_key_values).
  • The exported model supports beam search and greedy search and more via generate() method.
  • Reduce the model size by 3X using quantization.
  • Up to 5X speedup compared to PyTorch execution for greedy search and 3-4X for beam search.

Benchmarks

The benchmarks are the result of the T5-base model tested on English to French translation.

Onnx model

The following graph shows the latency of the quantized onnx model vs the PyTorch model for beam numbers varying from 1 to 9. The latencies shown here are for the mean of sequence lengths up to 130.

t5-base

The following heat map shows the X times faster which the ratio of latency of PyTorch to onnx model. The onnx model outperforms most cases. however, the speed of the model drops for a longer sequence length.

t5-base-hist

Quantized onnx model

Quantized models are lightweight models as mentioned earlier, these models have almost the same accuracy as the original model (quantized model scores are mentioned in the next section). Quantized onnx models have the lowest latency compared to both Onnx & PyTorch models.

t5-base-quant

The model outperforms the PyTorch model by 5.7X for greedy search on average and 3-4X for beam search.

t5-base-quant-hist

Note : The results were generated on AMD EPYC 7B12, these results may vary from device to device. The Onnx models usually perform well on high-end CPUs with more cores.

Quantized model scores

The results were tested for English to French translation with beam search number of 3.

Bleu_4 METEOR ROUGE_L
t5-small (quant) 0.240769 0.282342 0.468817
t5-small (pytorch) 0.254601 0.295172 0.492749
t5-base (quant) 0.267606 0.306019 0.499188
t5-base (pytorch) 0.268346 0.304969 0.503306
t5-large (quant) 0.286726 0.316845 0.503585
t5-large (pytorch) 0.294015 0.315774 0.508677

further improvements

  • currently the fastT5 library supports only the cpu version of onnxruntime, gpu implementation still needs to be done.
  • graph optimization of the onnx model will further reduce the latency.

Get Help

Acknowledgements

@article{2019t5,
  author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu},
  title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer},
  journal = {arXiv e-prints},
  year = {2019},
  archivePrefix = {arXiv},
  eprint = {1910.10683},
}
Owner
Kiran R
Kiran R
Include MelGAN, HifiGAN and Multiband-HifiGAN, maybe NHV in the future.

Fast (GAN Based Neural) Vocoder Chinese README Todo Submit demo Support NHV Discription Include MelGAN, HifiGAN and Multiband-HifiGAN, maybe include N

Zhengxi Liu (刘正曦) 134 Dec 16, 2022
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

Phil Wang 5k Jan 02, 2023
Code for EMNLP20 paper: "ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training"

ProphetNet-X This repo provides the code for reproducing the experiments in ProphetNet. In the paper, we propose a new pre-trained language model call

Microsoft 394 Dec 17, 2022
Google's Meena transformer chatbot implementation

Here's my attempt at recreating Meena, a state of the art chatbot developed by Google Research and described in the paper Towards a Human-like Open-Domain Chatbot.

Francesco Pham 94 Dec 25, 2022
PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

YangHeng 567 Jan 07, 2023
A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

NEC Laboratories Europe 13 Sep 08, 2022
A number of methods in order to perform Natural Language Processing on live data derived from Twitter

A number of methods in order to perform Natural Language Processing on live data derived from Twitter

1 Nov 24, 2021
In this project, we compared Spanish BERT and Multilingual BERT in the Sentiment Analysis task.

Applying BERT Fine Tuning to Sentiment Classification on Amazon Reviews Abstract Sentiment analysis has made great progress in recent years, due to th

Alexander Leonardo Lique Lamas 5 Jan 03, 2022
TEACh is a dataset of human-human interactive dialogues to complete tasks in a simulated household environment.

TEACh is a dataset of human-human interactive dialogues to complete tasks in a simulated household environment.

Alexa 98 Dec 09, 2022
Code for producing Japanese GPT-2 provided by rinna Co., Ltd.

japanese-gpt2 This repository provides the code for training Japanese GPT-2 models. This code has been used for producing japanese-gpt2-medium release

rinna Co.,Ltd. 491 Jan 07, 2023
LightSeq: A High-Performance Inference Library for Sequence Processing and Generation

LightSeq is a high performance inference library for sequence processing and generation implemented in CUDA. It enables highly efficient computation of modern NLP models such as BERT, GPT2, Transform

Bytedance Inc. 2.5k Jan 03, 2023
BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

303 Dec 17, 2022
Easy Language Model Pretraining leveraging Huggingface's Transformers and Datasets

Easy Language Model Pretraining leveraging Huggingface's Transformers and Datasets What is LASSL • How to Use What is LASSL LASSL은 LAnguage Semi-Super

LASSL: LAnguage Self-Supervised Learning 116 Dec 27, 2022
Utilizing RBERT model for KLUE Relation Extraction task

RBERT for Relation Extraction task for KLUE Project Description Relation Extraction task is one of the task of Korean Language Understanding Evaluatio

snoop2head 14 Nov 15, 2022
一个基于Nonebot2和go-cqhttp的娱乐性qq机器人

Takker - 一个普通的QQ机器人 此项目为基于 Nonebot2 和 go-cqhttp 开发,以 Sqlite 作为数据库的QQ群娱乐机器人 关于 纯兴趣开发,部分功能借鉴了大佬们的代码,作为Q群的娱乐+功能性Bot 声明 此项目仅用于学习交流,请勿用于非法用途 这是开发者的第一个Pytho

风屿 79 Dec 29, 2022
FewCLUE: 为中文NLP定制的小样本学习测评基准

FewCLUE: 为中文NLP定制的小样本学习测评基准

CLUE benchmark 387 Jan 04, 2023
This repository contains the codes for LipGAN. LipGAN was published as a part of the paper titled "Towards Automatic Face-to-Face Translation".

LipGAN Generate realistic talking faces for any human speech and face identity. [Paper] | [Project Page] | [Demonstration Video] Important Update: A n

Rudrabha Mukhopadhyay 438 Dec 31, 2022
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 829 Jan 07, 2023