Decoupled Smoothing in Probabilistic Soft Logic

Overview

Decoupled Smoothing in Probabilistic Soft Logic

Experiments for "Decoupled Smoothing in Probabilistic Soft Logic".

Probabilistic Soft Logic

Probabilistic Soft Logic (PSL) is a machine learning framework for developing probabilistic models. You can find more information about PSL available at the PSL homepage and examples of PSL.

Documentation

This repository contains code to run PSL rules for one-hop method, two-hop method, and decoupled smoothing method for predicting genders in a social network. We provide links to the datasets (Facebook100) in the data sub-folder.

Obtaining the data

This repository set-up assumes that the FB100 (raw .mat files) have been acquired and are saved the data folder. Follow these steps:

  1. The Facebook100 (FB100) dataset is publicly available from the Internet Archive at https://archive.org/details/oxford-2005-facebook-matrix and other public repositories. Download the datasets.
  2. Save raw datasets in placeholder folder data. They should be in the following form: Amherst41.mat.

Set permissions

Make sure that permissions are set so you can run the run scripts:

chmod -R +x *

Reproducing results

Step 1: Generate input files

To reproduce the results, first need to generate the predicate txts, run ./generate_data.sh {school name}. It will automatically generate the files required to run the PSL models as well as the files to run the baseline model.

For example, to generate data using Amherst college as dataset, simply run ./generate_data.sh Amherst41.

Step 2: Run PSL models

Simple Exeucution

To reproduce the results of a specific PSL model, run ./run_all.sh {data} {method dir}. This will run a selected method for all random seeds at all percentages.

This takes the following positional parameters:

  • data: what datafile you would like to use
  • method dir: this is the path to the directory you'd like the run

For example, to reproduce the result for method one-hop using the Amherst college as dataset, simply run ./run_all.sh Amherst41 cli_one_hop.

Advanced Execution

If you need to get results for a more specific setting, run ./run_method.sh {data} {random seed} {precent labeled} {eval|learn} {method dir}. It runs a selected method for a specified seed for a specified percentage for either learning or evaluation.

This takes the following positional parameters:

  • data: what datafile you would like to use
  • random seed: what seed to use
  • percent labeled: what percentage of labeled data
  • {learn|eval}: specify if you're learning or evaluating
  • method dir: this is the path to the directory you'd like the run

The output will be written in the following directory: ../results/decoupled-smoothing/{eval|learn}/{method run}/{data used}/{random seed}/

The directory will contain a set of folders for the inferences found at each percent labeled, named inferred-predicates{pct labeled}. The folder will also contain the a copy of the base.data, gender.psl, files and output logs from the runs.

Step 3: Run baseline Decoupled Smoothing model

To run the baseline decoupled smoothing model, run baseline_ds.py. It will generate a csv file contains the results of the baseline model named baseline_result.csv.

Evaluation

To run the evaluation of each models, run evaluation.py, which will generate the two plots in Figure 3 in the paper.

Requirements

These experiments expect that you are running on a POSIX (Linux/Mac) system. The specific application dependencies are as follows:

  • Python3
  • Bash >= 4.0
  • PostgreSQL >= 9.5
  • Java >= 7

Citation

All of these experiments are discussed in the following paper:

@inproceedings{chen:mlg20,
    title = {Decoupled Smoothing in Probabilistic Soft Logic},
    author = {Yatong Chen and Byran Tor and Eriq Augustine and Lise Getoor},
    booktitle = {International Workshop on Mining and Learning with Graphs (MLG)},
    year = {2020},
    publisher = {MLG},
    address = {Virtual},
}
Owner
Kushal Shingote
Android Developer📱📱 iOS Apps📱📱 Swift | Xcode | SwiftUI iOS Swift development📱 Kotlin Application📱📱 iOS📱 Artificial Intelligence 💻 Data science
Kushal Shingote
The-White-Noise-Project - The project creates noise intentionally

The-White-Noise-Project High quality audio matters everywhere, even in noise. Be

Ali Hakim Taşkıran 1 Jan 02, 2022
A Notifier Program that Notifies you to relax your eyes Every 15 Minutes👀

Every 15 Minutes is an application that is used to Notify you to Relax your eyes Every 15 Minutes, This is fully made with Python and also with the us

FSP Gang s' Admin 1 Nov 03, 2021
Open source stenotype engine

Plover Bringing stenography to everyone. Homepage Releases Wiki Blog Google Group Discord Chat About Installation Getting help Contributing Donations

Open Steno Project 2k Jan 09, 2023
A self contained invitation management system for gatekeeping.

Invitease Description A self contained invitation management system for gatekeeping. Purpose Serves as a focal point for inviting guests to a venue pr

מעגן מיכאל 7 Jul 19, 2022
🇮🇳 A Indian Flag Animation Project Made With Python

🇮🇳 A Indian Flag Animation Project Made With Python

MuFaz-TG 2 Oct 21, 2022
This code extracts line width of phonons from specular energy density (SED) calculated with LAMMPS.

This code extracts line width of phonons from specular energy density (SED) calculated with LAMMPS.

Masato Ohnishi 3 Jun 15, 2022
Lagrange Interpolation Method-Python

Lagrange Interpolation Method-Python The Lagrange interpolation formula is a way to find a polynomial, called Lagrange polynomial, that takes on certa

Motahare Soltani 2 Jul 05, 2022
An example of Connecting a MySQL Database with Python Code

An example of Connecting And Query Data a MySQL Database with Python Code And How to install Table of contents General info Technologies Setup General

Mohammad Hosseinzadeh 1 Nov 23, 2021
Python script for changing the SSH banner content with other content

Banner-changer-py Python script for changing the SSH banner content with other content. The Script will take the content of a specified file range and

2 Nov 23, 2021
Mpis-ex7 - Implementation of tasks 1, 2, 3 for Metody Probabilistyczne i Statystyka Lista 7

Implementations of task 1, 2 and 3 from here Author: Maciej Bazela Index: 261743 Each task was implemented in Python 3. I've used Cython to speed up e

Maciej Bazela 1 Feb 27, 2022
Python script to commit to your github for a perfect commit streak. This is purely for education purposes, please don't use this script to do bad stuff.

Daily-Git-Commit Commit to repo every day for the perfect commit streak Requirments pip install -r requirements.txt Setup Download this repository. Cr

JareBear 34 Dec 14, 2022
J MBF - Assalamualaikum Mamang...

★ VISITOR ★ ★ INFORMATION ★ Script Ini DiBuat Oleh YayanXD Script Ini Akan DiPerjual Belikan Tanggal 9 Januari 2022 Jika Mau Beli Script Silahkan Hub

Risky [ Zero Tow ] 5 Apr 08, 2022
my own python useful functions

PythonToolKit Motivation This Repo should help save time for data scientists' daily work regarding the Time Series regression task by providing functi

Kai 2 Oct 01, 2022
Goal: Enable awesome tooling for Bazel users of the C language family.

Hedron's Compile Commands Extractor for Bazel — User Interface What is this project trying to do for me? First, provide Bazel users cross-platform aut

Hedron Vision 290 Dec 26, 2022
A basic python project which replicates the functionalities on an 8 Ball.

Magic-8-Ball To the people who wish to make decisions using a Magic 8 Ball but can't get one? I gotchu. This is a basic python project which replicate

3 Jun 24, 2021
Example code for the book Fluent Python, 1st Edition (O'Reilly, 2015)

Fluent Python, First Edition: example code This repository is archived and will not be updated.

Fluent Python 5.4k Jan 09, 2023
Implementation of the Angular Spectrum method in Python to simulate Diffraction Patterns

Diffraction Simulations - Angular Spectrum Method Implementation of the Angular Spectrum method in Python to simulate Diffraction Patterns with arbitr

Rafael de la Fuente 276 Dec 30, 2022
A10 cipher - A Hill 2x2 cipher that totally gone wrong

A10_cipher This is a Hill 2x2 cipher that totally gone wrong, it encrypts with H

Caner Çetin 15 Oct 19, 2022
Data Applications Project

DBMS project- Hotel Franchise Data and application project By TEAM Kurukunda Bhargavi Pamulapati Pallavi Greeshma Amaraneni What is this project about

Greeshma 1 Nov 28, 2021
Implemented Exploratory Data Analysis (EDA) using Python.Built a dashboard in Tableau and found that 45.87% of People suffer from heart disease.

Heart_Disease_Diagnostic_Analysis Objective 🎯 The aim of this project is to use the given data and perform ETL and data analysis to infer key metrics

Sultan Shaikh 4 Jan 28, 2022