pytorch implementation of trDesign

Overview

trdesign-pytorch

This repository is a PyTorch implementation of the trDesign paper based on the official TensorFlow implementation. The initial port of the trRosetta network was done by @lucidrains.

Figure 1: trDesign Architecture

Figure 1 of De novo protein design by deep network hallucination (p. 12, Anishchenko et al., CC-BY-ND)

Requirements

Requires python 3.6+

pip install matplotlib numpy torch

Usage (protein design):

  1. Edit src/config.py to set the experiment configuration.
  2. Run python design.py
  3. All results will be saved under results/

Design Configuration Options

  • Sequence length (int)
  • AA_weight (float): how strongly we want the amino acid type composition to be 'natural'
  • RM_AA (str): disable specific amino acid types
  • n_models (int): how many trRosetta model ensembles we want to use during the MCMC loop
  • sequence constraint (str): fix a subset of the sequence residues to specific amino acids
  • target_motif (path): optimize a sequence with a target motif provided as an .npz file
  • MCMC options

Usage (protein structure prediction):

python predict.py example.a3m
# or
python predict.py example.fasta

To get a .pdb from the resulting .npz you need to request the trRosetta package from the original authors.

Then you can run:

python trRosetta.py example.npz example.fasta output.pdb -w /tmp

References

@article {Yang1496,
  author = {Yang, Jianyi and Anishchenko, Ivan and Park, Hahnbeom and Peng, Zhenling and Ovchinnikov, Sergey and Baker, David},
  title = {Improved protein structure prediction using predicted interresidue orientations},
  year = {2020},
  doi = {10.1073/pnas.1914677117},
  URL = {https://www.pnas.org/content/117/3/1496},
  eprint = {https://www.pnas.org/content/117/3/1496.full.pdf},
  journal = {Proceedings of the National Academy of Sciences}
}
@article {Anishchenko2020.07.22.211482,
  author = {Anishchenko, Ivan and Chidyausiku, Tamuka M. and Ovchinnikov, Sergey and Pellock, Samuel J. and Baker, David},
  title = {De novo protein design by deep network hallucination},
  year = {2020},
  doi = {10.1101/2020.07.22.211482},
  URL = {https://www.biorxiv.org/content/early/2020/07/23/2020.07.22.211482},
  eprint = {https://www.biorxiv.org/content/early/2020/07/23/2020.07.22.211482.full.pdf},
  journal = {bioRxiv}
}
@article {Tischer2020.11.29.402743,
  author = {Tischer, Doug and Lisanza, Sidney and Wang, Jue and Dong, Runze and Anishchenko, Ivan and Milles, Lukas F. and Ovchinnikov, Sergey and Baker, David},
  title = {Design of proteins presenting discontinuous functional sites using deep learning},
  year = {2020},
  doi = {10.1101/2020.11.29.402743},
  URL = {https://www.biorxiv.org/content/early/2020/11/29/2020.11.29.402743},
  eprint = {https://www.biorxiv.org/content/early/2020/11/29/2020.11.29.402743.full.pdf},
  journal = {bioRxiv}
}
Owner
Learn Ventures Inc.
Learn Ventures Inc.
Demonstrates iterative FGSM on Apple's NeuralHash model.

apple-neuralhash-attack Demonstrates iterative FGSM on Apple's NeuralHash model. TL;DR: It is possible to apply noise to CSAM images and make them loo

Lim Swee Kiat 11 Jun 23, 2022
This is an official implementation for "Self-Supervised Learning with Swin Transformers".

Self-Supervised Learning with Vision Transformers By Zhenda Xie*, Yutong Lin*, Zhuliang Yao, Zheng Zhang, Qi Dai, Yue Cao and Han Hu This repo is the

Swin Transformer 529 Jan 02, 2023
[NeurIPS 2020] Official repository for the project "Listening to Sound of Silence for Speech Denoising"

Listening to Sounds of Silence for Speech Denoising Introduction This is the repository of the "Listening to Sounds of Silence for Speech Denoising" p

Henry Xu 40 Dec 20, 2022
This repository contains all data used for writing a research paper Multiple Object Trackers in OpenCV: A Benchmark, presented in ISIE 2021 conference in Kyoto, Japan.

OpenCV-Multiple-Object-Tracking Python is version 3.6.7 to install opencv: pip uninstall opecv-python pip uninstall opencv-contrib-python pip install

6 Dec 19, 2021
A Python package for causal inference using Synthetic Controls

Synthetic Control Methods A Python package for causal inference using synthetic controls This Python package implements a class of approaches to estim

Oscar Engelbrektson 107 Dec 28, 2022
g2o: A General Framework for Graph Optimization

g2o - General Graph Optimization Linux: Windows: g2o is an open-source C++ framework for optimizing graph-based nonlinear error functions. g2o has bee

Rainer Kümmerle 2.5k Dec 30, 2022
Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

TianYuan 27 Nov 07, 2022
PyTorch Implement of Context Encoders: Feature Learning by Inpainting

Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst

321 Dec 25, 2022
Quadruped-command-tracking-controller - Quadruped command tracking controller (flat terrain)

Quadruped command tracking controller (flat terrain) Prepare Install RAISIM link

Yunho Kim 4 Oct 20, 2022
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
Betafold - AlphaFold with tunings

BetaFold We (hegelab.org) craeted this standalone AlphaFold (AlphaFold-Multimer,

2 Aug 11, 2022
Source code for "Taming Visually Guided Sound Generation" (Oral at the BMVC 2021)

Taming Visually Guided Sound Generation • [Project Page] • [ArXiv] • [Poster] • • Listen for the samples on our project page. Overview We propose to t

Vladimir Iashin 226 Jan 03, 2023
Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature

Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature Q. Wan, L. Gao, X. Li and L. Wen, "Industrial Image Anomaly

smiler 6 Dec 25, 2022
Tensorflow python implementation of "Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos"

Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos This repository is the official tensorflow python implementation

Yasamin Jafarian 287 Jan 06, 2023
CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement

Temporal Context Aggregation Network - Pytorch This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal

Zhiwu Qing 63 Sep 27, 2022
PCGNN - Procedural Content Generation with NEAT and Novelty

PCGNN - Procedural Content Generation with NEAT and Novelty Generation Approach — Metrics — Paper — Poster — Examples PCGNN - Procedural Content Gener

Michael Beukman 8 Dec 10, 2022
FcaNet: Frequency Channel Attention Networks

FcaNet: Frequency Channel Attention Networks PyTorch implementation of the paper "FcaNet: Frequency Channel Attention Networks". Simplest usage Models

327 Dec 27, 2022
PuppetGAN - Cross-Domain Feature Disentanglement and Manipulation just got way better! 🚀

Better Cross-Domain Feature Disentanglement and Manipulation with Improved PuppetGAN Quite cool... Right? Introduction This repo contains a TensorFlow

Giorgos Karantonis 5 Aug 25, 2022
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation

A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti

Zihao Fu 37 Nov 21, 2022
Adaptive Attention Span for Reinforcement Learning

Adaptive Transformers in RL Official implementation of Adaptive Transformers in RL In this work we replicate several results from Stabilizing Transfor

100 Nov 15, 2022