Pytorch implementation for A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose

Related tags

Deep LearningA-NeRF
Overview

A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose

Paper | Website | Data

A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose
Shih-Yang Su, Frank Yu, Michael Zollhรถfer, and Helge Rhodin
Thirty-Fifth Conference on Neural Information Processing Systems (NeurIPS 2021)

Setup

Setup environment

conda create -n anerf python=3.8
conda activate anerf

# install pytorch for your corresponding CUDA environments
pip install torch

# install pytorch3d: note that doing `pip install pytorch3d` directly may install an older version with bugs.
# be sure that you specify the version that matches your CUDA environment. See: https://github.com/facebookresearch/pytorch3d
pip install pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py38_cu102_pyt190/download.html

# install other dependencies
pip install -r requirements.txt

Download pre-processed data and pre-trained models

We provide pre-processed data in .h5 format, as well as pre-trained characters for SURREAL and Mixamo dataset.

Please see data/README.md for details.

Testing

You can use run_render.py to render the learned models under different camera motions, or retarget the character to different poses by

python run_render.py --nerf_args logs/surreal_model/args.txt --ckptpath logs/surreal_model/150000.tar \
                     --dataset surreal --entry hard --render_type bullet --render_res 512 512 \
                     --white_bkgd --runname surreal_bullet

Here,

  • --dataset specifies the data source for poses,
  • --entry specifices the particular subset from the dataset to render,
  • --render_type defines the camera motion to use, and
  • --render_res specifies the height and width of the rendered images.

Therefore, the above command will render 512x512 the learned SURREAL character with bullet-time effect like the following (resizsed to 256x256):

The output can be found in render_output/surreal_bullet/.

You can also extract mesh for the learned character:

python run_render.py --nerf_args logs/surreal_model/args.txt --ckptpath logs/surreal_model/150000.tar \
                     --dataset surreal --entry hard --render_type mesh --runname surreal_mesh

You can find the extracted .ply files in render_output/surreal_mesh/meshes/.

To render the mesh as in the paper, run

python render_mesh.py --expname surreal_mesh 

which will output the rendered images in render_output/surreal_mesh/mesh_render/ like the following:

You can change the setting in run_render.py to create your own rendering configuration.

Training

We provide template training configurations in configs/ for different settings.

To train A-NeRF on our pre-processed SURREAL dataset,

python run_nerf.py --config configs/surreal/surreal.txt --basedir logs  --expname surreal_model

The trained weights and log can be found in logs/surreal_model.

To train A-NeRF on our pre-processed Mixamo dataset with estimated poses, run

python run_nerf.py --config configs/mixamo/mixamo.txt --basedir log_mixamo/ --num_workers 8 --subject archer --expname mixamo_archer

This will train A-NeRF on Mixamo Archer with pose refinement for 500k iterations, with 8 worker threads for the dataloader.

You can also add --use_temp_loss --temp_coef 0.05 to optimize the pose with temporal constraint.

Additionally, you can specify --opt_pose_stop 200000 to stop the pose refinement at 200k iteraions to only optimize the body models for the remaining iterations.

To finetune the learned model, run

python run_nerf.py --config configs/mixamo/mixamo_finetune.txt --finetune --ft_path log_mixamo/mixamo_archer/500000.tar --expname mixamo_archer_finetune

This will finetune the learned Mixamo Archer for 200k with the already refined poses. Note that the pose will not be updated during this time.

Citation

@inproceedings{su2021anerf,
    title={A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose},
    author={Su, Shih-Yang and Yu, Frank and Zollh{\"o}fer, Michael and Rhodin, Helge},
    booktitle = {Advances in Neural Information Processing Systems},
    year={2021}
}

Acknowledgements

Owner
Shih-Yang Su
Enjoy working on ML/RL/CV/MIR related domain.
Shih-Yang Su
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022
Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling

RHGN Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling Dependencies torch==1.6.0 torchvision==0.7.0 dgl==0.7.1

Big Data and Multi-modal Computing Group, CRIPAC 6 Nov 29, 2022
Code release for SLIP Self-supervision meets Language-Image Pre-training

SLIP: Self-supervision meets Language-Image Pre-training What you can find in this repo: Pre-trained models (with ViT-Small, Base, Large) and code to

Meta Research 621 Dec 31, 2022
PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

36 Oct 30, 2022
Official Repo for Ground-aware Monocular 3D Object Detection for Autonomous Driving

Visual 3D Detection Package: This repo aims to provide flexible and reproducible visual 3D detection on KITTI dataset. We expect scripts starting from

Yuxuan Liu 305 Dec 19, 2022
A Self-Supervised Contrastive Learning Framework for Aspect Detection

AspDecSSCL A Self-Supervised Contrastive Learning Framework for Aspect Detection This repository is a pytorch implementation for the following AAAI'21

Tian Shi 30 Dec 28, 2022
OOD Dataset Curator and Benchmark for AI-aided Drug Discovery

🔥 DrugOOD 🔥 : OOD Dataset Curator and Benchmark for AI Aided Drug Discovery This is the official implementation of the DrugOOD project, this is the

108 Dec 17, 2022
An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics.

Sketch Simulator An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics. See

12 Dec 18, 2022
Causal Influence Detection for Improving Efficiency in Reinforcement Learning

Causal Influence Detection for Improving Efficiency in Reinforcement Learning This repository contains the code release for the paper "Causal Influenc

Autonomous Learning Group 21 Nov 29, 2022
Invasive Plant Species Identification

Invasive_Plant_Species_Identification Used LiDAR Odometry and Mapping (LOAM) to create a 3D point cloud map which can be used to identify invasive pla

2 May 12, 2022
HNN: Human (Hollywood) Neural Network

HNN: Human (Hollywood) Neural Network Learn the top 1000 actors on IMDB with your very own low cost, highly parallel, CUDAless biological neural netwo

Madhava Jay 0 Dec 21, 2021
Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency This is a official implementation of the CycleContrast introduced in

13 Nov 14, 2022
Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Microsoft 394 Jan 08, 2023
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
So-ViT: Mind Visual Tokens for Vision Transformer

So-ViT: Mind Visual Tokens for Vision Transformer        Introduction This repository contains the source code under PyTorch framework and models trai

Jiangtao Xie 44 Nov 24, 2022
Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep

Facebook Research 192 Dec 23, 2022
LIAO Shuiying 6 Dec 01, 2022
Asymmetric metric learning for knowledge transfer

Asymmetric metric learning This is the official code that enables the reproduction of the results from our paper: Asymmetric metric learning for knowl

20 Dec 06, 2022
Deep Latent Force Models

Deep Latent Force Models This repository contains a PyTorch implementation of the deep latent force model (DLFM), presented in the paper, Compositiona

Tom McDonald 5 Oct 26, 2022