Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Overview

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

This repository provides a unified online platform, LoLi-Platform http://mc.nankai.edu.cn/ll/, that covers many popular deep learning-based LLIE methods, of which the results can be produced through a user-friendly web interface, contains a low-light image and video dataset, LoLi-Phone (will be released soon), in which the images and videos are taken by various phones' cameras under diverse illumination conditions and scenes, and collects deep learning-based low-light image and video enhancement methods, datasets, and evaluation metrics. More content and details can be found in our Survey Paper: Lighting the Darkness in the Deep Learning Era. We provide the comparison results on the real low-light videos taken by different mobile phones’ cameras at YouTube https://www.youtube.com/watch?v=Elo9TkrG5Oo&t=6s.

We will periodically update the content. Welcome to let us know if we miss your work that is published in top-tier Journal or conference. We will add it.

Our LoLi-Platform supports the function of download. Please right click and then save the figure.

If you use this dataset or platform, please cite our paper. Please hit the star at the top-right corner. Thanks!

Contents

  1. LoLi-Platform
  2. LoLi-Phone Dataset
  3. Methods
  4. Datasets
  5. Metrics
  6. Citation

LoLi-Platform

Currently, the LoLi-Platform covers 13 popular deep learning-based LLIE methods including LLNet, LightenNet, Retinex-Net, EnlightenGAN, MBLLEN, KinD, KinD++, TBEFN, DSLR, DRBN, ExCNet, Zero-DCE, and RRDNet, where the results of any inputs can be produced through a user-friendly web interface. Have fun: LoLi-Platform.

LoLi-Phone

Overview LoLi-Phone dataset contains 120 videos (55,148 images) taken by 18 different phones' cameras including iPhone 6s, iPhone 7, iPhone7 Plus, iPhone8 Plus, iPhone 11, iPhone 11 Pro, iPhone XS, iPhone XR, iPhone SE, Xiaomi Mi 9, Xiaomi Mi Mix 3, Pixel 3, Pixel 4, Oppo R17, Vivo Nex, LG M322, OnePlus 5T, Huawei Mate 20 Pro under diverse illumination conditions (e.g., weak illumination, underexposure, dark, extremely dark, back-lit, non-uniform light, color light sources, etc.) in the indoor and outdoor scenes. Anyone can access the LoLi-Phone dataset.

Methods

Overview

Date Publication Title Abbreviation Code Platform
2017 PR LLNet: A deep autoencoder approach to natural low-light image enhancement paper LLNet Code Theano
2018 PRL LightenNet: A convolutional neural network for weakly illuminated image enhancement paper LightenNet Code Caffe & MATLAB
2018 BMVC Deep retinex decomposition for low-light enhancement paper Retinex-Net Code TensorFlow
2018 BMVC MBLLEN: Low-light image/video enhancement using CNNs paper MBLLEN Code TensorFlow
2018 TIP Learning a deep single image contrast enhancer from multi-exposure images paper SCIE Code Caffe & MATLAB
2018 CVPR Learning to see in the dark paper Chen et al. Code TensorFlow
2018 NeurIPS DeepExposure: Learning to expose photos with asynchronously reinforced adversarial learning paper DeepExposure TensorFlow
2019 ICCV Seeing motion in the dark paper Chen et al. Code TensorFlow
2019 ICCV Learning to see moving object in the dark paper Jiang and Zheng Code TensorFlow
2019 CVPR Underexposed photo enhancement using deep illumination estimation paper DeepUPE Code TensorFlow
2019 ACMMM Kindling the darkness: A practical low-light image enhancer paper KinD Code TensorFlow
2019 ACMMM (IJCV) Kindling the darkness: A practical low-light image enhancer paper (Beyond brightening low-light images paper) KinD (KinD++) Code TensorFlow
2019 ACMMM Progressive retinex: Mutually reinforced illumination-noise perception network for low-light image enhancement paper Wang et al. Caffe
2019 TIP Low-light image enhancement via a deep hybrid network paper Ren et al. Caffe
2019(2021) arXiv(TIP) EnlightenGAN: Deep light enhancement without paired supervision paper arxiv EnlightenGAN Code PyTorch
2019 ACMMM Zero-shot restoration of back-lit images using deep internal learning paper ExCNet Code PyTorch
2020 CVPR Zero-reference deep curve estimation for low-light image enhancement paper Zero-DCE Code PyTorch
2020 CVPR From fidelity to perceptual quality: A semi-supervised approach for low-light image enhancement paper DRBN Code PyTorch
2020 ACMMM Fast enhancement for non-uniform illumination images using light-weight CNNs paper Lv et al. TensorFlow
2020 ACMMM Integrating semantic segmentation and retinex model for low light image enhancement paper Fan et al.
2020 CVPR Learning to restore low-light images via decomposition-and-enhancement paper Xu et al. PyTorch
2020 AAAI EEMEFN: Low-light image enhancement via edge-enhanced multi-exposure fusion network paper EEMEFN PyTorch
2020 TIP Lightening network for low-light image enhancement paper DLN PyTorch
2020 TMM Luminance-aware pyramid network for low-light image enhancement paper LPNet PyTorch
2020 ECCV Low light video enhancement using synthetic data produced with an intermediate domain mapping paper SIDGAN TensorFlow
2020 TMM TBEFN: A two-branch exposure-fusion network for low-light image enhancement paper TBEFN Code TensorFlow
2020 ICME Zero-shot restoration of underexposed images via robust retinex decomposition paper RRDNet Code PyTorch
2020 TMM DSLR: Deep stacked laplacian restorer for low-light image enhancement paper DSLR Code PyTorch

Datasets

Abbreviation Number Format Real/Synetic Video Paired/Unpaired/Application Dataset
LOL paper 500 RGB Real No Paired Dataset
SCIE paper 4413 RGB Real No Paired Dataset
MIT-Adobe FiveK paper 5000 Raw Real No Paired Dataset
SID paper 5094 Raw Real No Paired Dataset
DRV paper 202 Raw Real Yes Paired Dataset
SMOID paper 179 Raw Real Yes Paired Dataset
LIME paper 10 RGB Real No Unpaired Dataset
NPE paper 84 RGB Real No Unpaired Dataset
MEF paper 17 RGB Real No Unpaired Dataset
DICM paper 64 RGB Real No Unpaired Dataset
VV 24 RGB Real No Unpaired Dataset
ExDARK paper 7363 RGB Real No Application Dataset
BBD-100K paper 10,000 RGB Real Yes Application Dataset
DARK FACE paper 6000 RGB Real No Application Dataset

Metrics

Abbreviation Full-/Non-Reference Platform Code
MAE (Mean Absolute Error) Full-Reference
MSE (Mean Square Error) Full-Reference
PSNR (Peak Signal-to-Noise Ratio) Full-Reference
SSIM (Structural Similarity Index Measurement) Full-Reference MATLAB Code
LPIPS (Learned Perceptual Image Patch Similarity) Full-Reference PyTorch Code
LOE (Lightness Order Error) Non-Reference MATLAB Code
NIQE (Naturalness Image Quality Evaluator) Non-Reference MATLAB Code
PI (Perceptual Index) Non-Reference MATLAB Code
SPAQ (Smartphone Photography Attribute and Quality) Non-Reference PyTorch Code
NIMA (Neural Image Assessment) Non-Reference PyTorch/TensorFlow Code/Code

Citation

If you find the repository helpful in your resarch, please cite the following paper.

@article{LoLi,
  title={Lighting the Darkness in the Deep Learning Era},
  author={Li, Chongyi and Guo, Chunle and Han, Linghao and Jiang, Jun and Cheng, Ming-Ming and Gu, Jinwei and Loy, Chen Change},
  journal={arXiv:2104.10729},
  year={2021}
}

Contact Information

[email protected]

[email protected]
Owner
Chongyi Li
Chongyi Li
PyAF is an Open Source Python library for Automatic Time Series Forecasting built on top of popular pydata modules.

PyAF (Python Automatic Forecasting) PyAF is an Open Source Python library for Automatic Forecasting built on top of popular data science python module

CARME Antoine 405 Jan 02, 2023
Simple cross-platform application for DaVinci surgical video frame annotation

About DaVid is a simple cross-platform GUI for annotating robotic and endoscopic surgical actions for use in deep-learning research. Features Simple a

Cyril Zakka 4 Oct 09, 2021
Predicting the duration of arrival delays for commercial flights.

Flight Delay Prediction Our objective is to predict arrival delays of commercial flights. According to the US Department of Transportation, about 21%

Jordan Silke 1 Jan 11, 2022
Phylogeny Partners

Phylogeny-Partners Two states models Instalation You may need to install the cython, networkx, numpy, scipy package: pip install cython, networkx, num

1 Sep 19, 2022
Pixel Consensus Voting for Panoptic Segmentation (CVPR 2020)

Implementation for Pixel Consensus Voting (CVPR 2020). This codebase contains the essential ingredients of PCV, including various spatial discretizati

Haochen 23 Oct 25, 2022
Python and Julia in harmony.

PythonCall & JuliaCall Bringing Python® and Julia together in seamless harmony: Call Python code from Julia and Julia code from Python via a symmetric

Christopher Rowley 414 Jan 07, 2023
An AI Assistant More Than a Toolkit

tymon An AI Assistant More Than a Toolkit The reason for creating framework tymon is simple. making AI more like an assistant, helping us to complete

TymonXie 46 Oct 24, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Facebook Research 68 Dec 29, 2022
Bootstrapped Unsupervised Sentence Representation Learning (ACL 2021)

Install first pip3 install -e . Training python3 training/unsupervised_tuning.py python3 training/supervised_tuning.py python3 training/multilingual_

yanzhang_nlp 26 Jul 22, 2022
Collection of Docker images for ML/DL and video processing projects

Collection of Docker images for ML/DL and video processing projects. Overview of images Three types of images differ by tag postfix: base: Python with

OSAI 87 Nov 22, 2022
A Simple Example for Imitation Learning with Dataset Aggregation (DAGGER) on Torcs Env

Imitation Learning with Dataset Aggregation (DAGGER) on Torcs Env This repository implements a simple algorithm for imitation learning: DAGGER. In thi

Hao 66 Nov 23, 2022
git《USD-Seg:Learning Universal Shape Dictionary for Realtime Instance Segmentation》(2020) GitHub: [fig2]

USD-Seg This project is an implement of paper USD-Seg:Learning Universal Shape Dictionary for Realtime Instance Segmentation, based on FCOS detector f

Ruolin Ye 80 Nov 28, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
MRI reconstruction (e.g., QSM) using deep learning methods

deepMRI: Deep learning methods for MRI Authors: Yang Gao, Hongfu Sun This repo is devloped based on Pytorch (1.8 or later) and matlab (R2019a or later

Hongfu Sun 17 Dec 18, 2022
Miscellaneous and lightweight network tools

Network Tools Collection of miscellaneous and lightweight network tools to simplify daily operations, administration, and troubleshooting of networks.

Nicholas Russo 22 Mar 22, 2022
Language-Agnostic Website Embedding and Classification

Homepage2Vec Language-Agnostic Website Embedding and Classification based on Curlie labels https://arxiv.org/pdf/2201.03677.pdf Homepage2Vec is a pre-

25 Dec 27, 2022
The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color

The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color Overview Code and dataset for The World of an Octopus: H

1 Nov 13, 2021
This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning"

CSP_Deep_EEG This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning" {https://www

Seyed Mahdi Roostaiyan 2 Nov 08, 2022
Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Haoyan Huo 9 Nov 18, 2022