Athena is an open-source implementation of end-to-end speech processing engine.

Related tags

Text Data & NLPathena
Overview

Athena

Athena is an open-source implementation of end-to-end speech processing engine. Our vision is to empower both industrial application and academic research on end-to-end models for speech processing. To make speech processing available to everyone, we're also releasing example implementation and recipe on some opensource dataset for various tasks (Automatic Speech Recognition, Speech Synthesis, Voice Conversion, Speaker Recognition, etc).

All of our models are implemented in Tensorflow>=2.0.1. For ease of use, we provide Kaldi-free pythonic feature extractor with Athena_transform.

1) Table of Contents

2) Key Features

  • Hybrid Attention/CTC based end-to-end ASR
  • Speech-Transformer
  • Unsupervised pre-training
  • Multi-GPU training on one machine or across multiple machines with Horovod
  • WFST creation and WFST-based decoding
  • Deployment with Tensorflow C++

3) Installation

We provide the installation steps of tensorflow 2.3.1. The corresponding linux system environment is : cuda:10.1, ubuntu18.04. If your server installed docker, you can pull docker image : docker pull nvidia/cuda:10.1-devel-ubuntu18.04, and installing the python requirements: apt update && apt install python3 && apt install python3-venv && apt install python3-pip. We also provide a script include all installation steps:

# clone athena package,and run one step installation
git clone https://github.com/athena-team/athena.git
cd athena
bash one_installation.sh

If you want to use one_installation.sh, you can ignore the following steps!!!

3.1) Clone athena package

# In this step,you must install git( sudo apt-get update && sudo apt-get install git)
git clone https://github.com/athena-team/athena.git

3.2) Check system level installations

To check the base prerequisites for Athena

cd athena
bash check_source.sh

3.3) Creating a virtual environment [Optional]

This project has only been tested on Python 3. We highly recommend creating a virtual environment and installing the python requirements there.

# Setting up virtual environment
apt-get install python3-venv
python3 -m venv venv_athena
source venv_athena/bin/activate

3.4) Install tensorflow backend

For more information, you can checkout the tensorflow website.

# we highly recommend firstly update pip, if you find tensorflow download very slow, you can add "-i https://pypi.tuna.tsinghua.edu.cn/simple", eg: pip install tensorflow==2.3.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install --upgrade pip
pip install tensorflow==2.3.1

3.5) Install horovod for multiple-device training [Optional]

For multiple GPU/CPU training You have to install the horovod, you can find out more information from the horovod website. We provide a installation steps as reference,you can run the script in tools/.

cd athena
bash tools/install_horovod.sh

3.6) Install sph2pipe, spm, kenlm, sclite for ASR Tasks [Optional]

These packages are usually required for ASR tasks, we assume they have been installed when running the recipe for ASR tasks. You can find installation scripts of them in tools/, and a general installation script as reference:

cd athena
bash tools/install_tools_for_asr.sh

3.7) Install pydecoder for WFST decoding [Optional]

For WFST decoding You have to install pydecoder, installation guide for pydecoder can be found athena-decoder website

3.8) Install athena package

cd athena
pip install -r requirements.txt
python setup.py bdist_wheel sdist
python -m pip install --ignore-installed dist/athena-0.1.0*.whl
  • Once athena is successfully installed, you should do source tools/env.sh firstly before doing other things.

3.9) Test your installation

  • On a single cpu/gpu
source tools/env.sh
python examples/translate/spa-eng-example/prepare_data.py examples/translate/spa-eng-example/data/train.csv
python athena/main.py examples/translate/spa-eng-example/transformer.json
  • On multiple cpu/gpu in one machine (you should make sure your hovorod is successfully installed)
source tools/env.sh
python examples/translate/spa-eng-example/prepare_data.py examples/translate/spa-eng-example/data/train.csv
horovodrun -np 4 -H localhost:4 python athena/horovod_main.py examples/translate/spa-eng-example/transformer.json

Notes

  • If you see errors such as ERROR: Cannot uninstall 'wrapt' while installing TensorFlow, try updating it using command conda update wrapt. Same for similar dependencies such as entrypoints, llvmlite and so on.
  • You may want to make sure you have g++ version 7 or above to make sure you can successfully install TensorFlow.

4) Training

We will use ASR task TIMIT as an example to walk you through the whole training process. The recipe for this tutorial can be found at examples/asr/timit/run_101.sh.

4.1) Prepare the data

The data for TIMIT can be found here or here. First, we need to download the data and place it at examples/asr/timit/data/TIMIT. Then we will run the following scripts, which will do some data precessing and generate data csv for train, dev and test set of TIMIT.

mkdir -p examples/asr/timit/data
python examples/asr/timit/local/prepare_data.py examples/asr/timit/data/TIMIT examples/asr/timit/data

Below is an example csv we generated, it contains the absolute path of input audio, its length, its transcript and its speaker

wav_filename	wav_length_ms	transcript	speaker
/workspace/athena/examples/asr/timit/data/wav/TRAIN/MCLM0-SI1456.WAV	3065	sil dh iy z eh er er vcl g ae sh vcl b ah vcl b ax sh epi m ey cl k hh ay l ix f ah ng cl sh epi en el th er m el vcl b eh r ix er z sil	MCLM0
/workspace/athena/examples/asr/timit/data/wav/TRAIN/MCLM0-SX286.WAV	3283	sil ih n eh v r ih m ey vcl jh er cl k l ow v er l iy f cl t r ae f ix cl k s ah m cl t ay m z vcl g eh cl s vcl b ae cl t ah cl p sil	MCLM0
/workspace/athena/examples/asr/timit/data/wav/TRAIN/MCLM0-SX196.WAV	1740	sil hh aw vcl d uw ao r sh cl ch er zh epi m ey cl p er l vcl d z sil	MCLM0
/workspace/athena/examples/asr/timit/data/wav/TRAIN/MCLM0-SX106.WAV	2214	sil eh hh y uw vcl jh cl t ae cl p ix sh cl t r ix hh ah ng ix n er hh ah l w ey sil	MCLM0
/workspace/athena/examples/asr/timit/data/wav/TRAIN/MCLM0-SX16.WAV	1926	sil ey r ow l el v w ay er l ey n ih er dh ax w ao l sil	MCLM0
/workspace/athena/examples/asr/timit/data/wav/TRAIN/MCLM0-SI2086.WAV	2745	sil ae vcl b s el uw sh en f ao r hh ix z l ay hh sil	MCLM0
/workspace/athena/examples/asr/timit/data/wav/TRAIN/MCLM0-SX376.WAV	2464	sil w ih m ix n m ey n eh v er vcl b ix cl k ah ng cl k ax m cl p l iy cl l iy cl k w el cl t ax m eh n sil	MCLM0
/workspace/athena/examples/asr/timit/data/wav/TRAIN/MCLM0-SI826.WAV	3596	sil k ao sh en cl k en cl t ih n y uw s ix vcl m ih n ax sh cl t r ey sh en ix z epi n aa vcl r eh cl k m eh n d ix f ax l ae cl t ey dx ng cl k aw z sil	MCLM0

4.2) Setting the Configuration File

All of our training/ inference configurations are written in config.json. Below is an example configuration file with comments to help you understand.

{
  "batch_size":16,
  "num_epochs":20,
  "sorta_epoch":1,  # keep batches sorted for sorta_epoch, this helps with the convergence of models
  "ckpt":"examples/asr/timit/ckpts/mtl_transformer_ctc_sp/",
  "summary_dir":"examples/asr/timit/ckpts/mtl_transformer_ctc_sp/event",

  "solver_gpu":[0],
  "solver_config":{
    "clip_norm":100,  # clip gradients into a norm of 100
    "log_interval":10,  # print logs for log_interval steps
    "enable_tf_function":true  # enable tf_function to make training faster
  },

  "model":"mtl_transformer_ctc",  # the type of model this training uses, it's a multi-task transformer based model
  "num_classes": null,
  "pretrained_model": null,
  "model_config":{
    "model":"speech_transformer",
    "model_config":{
      "return_encoder_output":true,  # whether to return encoder only or encoder + decoder
      "num_filters":256,  # dimension of cnn filter
      "d_model":256,  # dimension of transformer
      "num_heads":8,  # heads of transformer
      "num_encoder_layers":9,
      "num_decoder_layers":3,
      "dff":1024,  # dimension of feed forward layer
      "rate":0.2,  # dropout rate for transformer
      "label_smoothing_rate":0.0,  # label smoothing rate for output logits
      "schedual_sampling_rate":1.0  # scheduled sampling rate for decoder
    },
    "mtl_weight":0.5
  },

  "inference_config":{
    "decoder_type":"beam_search_decoder",  # use beam search instead of argmax
    "beam_size":10,
    "ctc_weight":0.0,  # weight for ctc joint decoding
    "model_avg_num":10  # averaging checkpoints gives better results than using single checkpoint with best loss/ metrics
  },

  "optimizer":"warmup_adam",
  "optimizer_config":{  # configs for warmup optimizer
    "d_model":256,
    "warmup_steps":4000,
    "k":1
  },


  "dataset_builder": "speech_recognition_dataset",
  "num_data_threads": 1,
  "trainset_config":{
    "data_csv": "examples/asr/timit/data/train.csv",
    "audio_config":{"type":"Fbank", "filterbank_channel_count":40},  # config for feature extraction
    "cmvn_file":"examples/asr/timit/data/cmvn",  # mean and variance of FBank
    "text_config": {"type":"eng_vocab", "model":"examples/asr/timit/data/vocab"},  # vocab list
    "speed_permutation": [0.9, 1.0, 1.1],  # use speed perturbation to increase data diversitty
    "input_length_range":[10, 8000]  # range of audio input length
  },
  "devset_config":{
    "data_csv": "examples/asr/timit/data/dev.csv",
    "audio_config":{"type":"Fbank", "filterbank_channel_count":40},
    "cmvn_file":"examples/asr/timit/data/cmvn",
    "text_config": {"type":"eng_vocab", "model":"examples/asr/timit/data/vocab"},
    "input_length_range":[10, 8000]
  },
  "testset_config":{
    "data_csv": "examples/asr/timit/data/test.csv",
    "audio_config":{"type":"Fbank", "filterbank_channel_count":40},
    "cmvn_file":"examples/asr/timit/data/cmvn",
    "text_config": {"type":"eng_vocab", "model":"examples/asr/timit/data/vocab"}
  }
}

To get state-of-the-art models, we usually need to train for more epochs and use ctc joint decoding with language model. These are omitted for to make this tutorial easier to understand.

4.3) Data normalization

Data normalization is important for the convergence of neural network models. With the generated csv file, we will compute the cmvn file like this

python athena/cmvn_main.py examples/asr/$dataset_name/configs/mpc.json examples/asr/$dataset_name/data/all.csv

The generated cmvn files will be found at examples/asr/timit/data/cmvn.

4.4) Storage Features Offline

This step is optional. athena/tools/storage_features_offline.py will be a good choice to store the features of training data offline in advance if you want to save the time of data processing. In subsequent training, kaldiio can be used to read them directly. The specific operation is:

python athena/tools/storage_features_offline.py examples/asr/aishell/configs/storage_features_offline.json

Below is an example json configuration file to help you understand.

{
  "dataset_builder": "speech_recognition_dataset_kaldiio",
  "num_data_threads": 1,
  "trainset_config":{
    "data_scps_dir": "examples/asr/aishell/data/train",
    "data_csv": "examples/asr/aishell/data/train.csv",
    "audio_config": {"type":"Fbank", "filterbank_channel_count":40},
    "cmvn_file":"examples/asr/aishell/data/cmvn",
    "text_config": {"type":"vocab", "model":"examples/asr/aishell/data/vocab"},
    "input_length_range":[10, 8000],
    "speed_permutation": [0.9, 1.0, 1.1],
    "spectral_augmentation":{"warp_for_time": false, "num_t_mask": 2, "num_f_mask": 2, "max_t": 50, "max_f": 10, "max_w": 80},
    "apply_cmvn": true,
    "global_cmvn": true,
    "offline": true
  },  
  "devset_config":{
    "data_scps_dir": "examples/asr/aishell/data/dev",
    "data_csv": "examples/asr/aishell/data/dev.csv",
    "audio_config": {"type":"Fbank", "filterbank_channel_count":40},
    "cmvn_file":"examples/asr/aishell/data/cmvn",
    "text_config": {"type":"vocab", "model":"examples/asr/aishell/data/vocab"},
    "input_length_range":[10, 8000],
    "apply_cmvn": true,
    "global_cmvn": true,
    "offline": true
  },  
  "testset_config":{
    "data_scps_dir": "examples/asr/aishell/data/test",
    "data_csv": "examples/asr/aishell/data/test.csv",
    "audio_config": {"type":"Fbank", "filterbank_channel_count":40},
    "cmvn_file":"examples/asr/aishell/data/cmvn",
    "text_config": {"type":"vocab", "model":"examples/asr/aishell/data/vocab"},
    "apply_cmvn": true,
    "global_cmvn": true,
    "offline": true
  }
}

It should be noted that "offline": true. "apply_cmvn" indicates whether CMVN processing is required, and it is set to true by default. "global_cmvn" indicates whether CMVN processing is global, and it is set to true by default.

4.5) Train a Model

With all the above preparation done, training becomes straight-forward. athena/main.py is the entry point of the training module. Just run:

$ python athena/main.py examples/asr/timit/configs/mtl_transformer_sp_101.json

Please install Horovod and MPI at first, if you want to train model using multi-gpu. See the Horovod page for more instructions.

To run on a machine with 4 GPUs with Athena:

$ horovodrun -np 4 -H localhost:4 python athena/horovod_main.py examples/asr/timit/configs/mtl_transformer_sp_101.json

To run on 4 machines with 4 GPUs each with Athena:

$ horovodrun -np 16 -H server1:4,server2:4,server3:4,server4:4 python athena/horovod_main.py examples/asr/timit/configs/mtl_transformer_sp_101.json

4.6) Evaluate a model

All of our inference related scripts are merged into inference.py. athena/inference.py is the entry point of inference. Just run:

python athena/inference.py examples/asr/timit/configs/mtl_transformer_sp_101.json

A file named inference.log will be generated, which contains the log of decoding. inference.log is very important to get correct scoring results, and it will be overwrited if you run athena/inference.py multiple times.

4.7) Scoring

For scoring, you will need to install sclite first. The results of scoring can be found in score/score_map/inference.log.result.map.sys. The last few lines will look like this

|================================================================|
| Sum/Avg|  192   7215 | 84.4   11.4    4.3    3.2   18.8   99.5 |
|================================================================|
|  Mean  |  1.0   37.6 | 84.7   11.4    3.9    3.3   18.6   99.5 |
|  S.D.  |  0.0   11.7 |  7.7    6.3    4.2    3.6    9.0    7.2 |
| Median |  1.0   36.0 | 85.0   10.8    2.9    2.8   17.5  100.0 |
|----------------------------------------------------------------|

The line with Sum/Avg is usually what you should be looking for if you just want an overall PER result. In this case, 11.4 is the substitution error, 4.3 is the deletion error, 3.2 is the insertion error and 18.8 is the total PER.

7) Self-supervised speech representation learning

7.1) MPC

Masked Predictive Coding (MPC) uses masked reconstruction objective to perform predictive coding on transformer based models. It achieved significant improvements on various speech recognition datasets. For more information, please refer to following paper(s).

Improving Transformer-based Speech Recognition Using Unsupervised Pre-training

A Further Study of Unsupervised Pre-training for Transformer Based Speech Recognition

MPC models can be trained by running python athena/main.py examples/asr/*/configs/mpc.json. To use pretrained MPC model in ASR training, simply set the "pretrained_model" section in ASR json config to the checkpoint dir of MPC model and proceed training.

7.2) Speech SimCLR

Speech SimCLR is a new self-supervised objective for speech representation learning. During training, Speech SimCLR applies augmentation on raw speech and its spectrogram. Its objective is the combination of contrastive loss that maximizes agreement between differently augmented samples in the latent space and reconstruction loss of input representation. For more information, please refer to following paper(s).

Speech SimCLR: Combining Contrastive and Reconstruction Objective for Self-supervised Speech Representation Learning

For now, pre-training with Speech SimCLR is only supported for Librispeech. You can run it with python athena/main.py examples/asr/librispeech/configs/speech_simclr.json. For feature extraction, simply run python athena/inference.py examples/asr/librispeech/configs/speech_simclr.json. The pre-trained Speech SimCLR models can be found here.

8) Results

8.1) ASR

Language Model Name Training Data Hours of Speech Error Rate
English Transformer LibriSpeech Dataset 960 h 3.1% (WER)
Mandarin Transformer HKUST Dataset 151 h 22.75% (CER)
Mandarin Transformer AISHELL Dataset 178 h 6.6% (CER)

To compare with other published results, see wer_are_we.md.

9) Directory Structure

Below is the basic directory structure for Athena

|-- Athena
|   |-- data  # - root directory for input-related operations
|   |   |-- datasets  # custom datasets for ASR, TTS and pre-training
|   |-- layers  # some layers
|   |-- models  # some models
|   |-- tools # contains various tools, e.g. decoding tools
|   |-- transform # custom featureizer based on C++
|   |   |-- feats
|   |   |   |-- ops # c++ code on tensorflow ops
|   |-- utils # utils, e.g. checkpoit, learning_rate, metric, etc
|-- deploy  # deployment with Tensorflow C++
|   |-- include
|   |-- src
|-- docker
|-- docs  # docs
|-- examples  # example scripts for ASR, TTS, etc
|   |-- asr  # each subdirectory contains a data preparation scripts and a run script for the task
|   |   |-- aishell
|   |   |-- hkust
|   |   |-- librispeech
|-- tools  # need to source env.sh before training
Owner
Ke Technologies
Ke Technologies
Spert NLP Relation Extraction API deployed with torchserve for inference

URLMask Python program for Linux users to change a URL to ANY domain. A program than can take any url and mask it to any domain name you like. E.g. ne

Zichu Chen 1 Nov 24, 2021
A framework for training and evaluating AI models on a variety of openly available dialogue datasets.

ParlAI (pronounced “par-lay”) is a python framework for sharing, training and testing dialogue models, from open-domain chitchat, to task-oriented dia

Facebook Research 9.7k Jan 09, 2023
Simple and efficient RevNet-Library with DeepSpeed support

RevLib Simple and efficient RevNet-Library with DeepSpeed support Features Half the constant memory usage and faster than RevNet libraries Less memory

Lucas Nestler 112 Dec 05, 2022
Precision Medicine Knowledge Graph (PrimeKG)

PrimeKG Website | bioRxiv Paper | Harvard Dataverse Precision Medicine Knowledge Graph (PrimeKG) presents a holistic view of diseases. PrimeKG integra

Machine Learning for Medicine and Science @ Harvard 103 Dec 10, 2022
🤗 The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools

🤗 The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools

Hugging Face 15k Jan 02, 2023
Production First and Production Ready End-to-End Keyword Spotting Toolkit

Production First and Production Ready End-to-End Keyword Spotting Toolkit

223 Jan 02, 2023
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

Justin Terry 32 Nov 09, 2021
Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks

Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks. It takes raw videos/images + text as inputs, and outputs task predictions. ClipB

Jie Lei 雷杰 612 Jan 04, 2023
This is the 25 + 1 year anniversary version of the 1995 Rachford-Rice contest

Rachford-Rice Contest This is the 25 + 1 year anniversary version of the 1995 Rachford-Rice contest. Can you solve the Rachford-Rice problem for all t

13 Sep 20, 2022
Open Source Neural Machine Translation in PyTorch

OpenNMT-py: Open-Source Neural Machine Translation OpenNMT-py is the PyTorch version of the OpenNMT project, an open-source (MIT) neural machine trans

OpenNMT 5.8k Jan 04, 2023
An Explainable Leaderboard for NLP

ExplainaBoard: An Explainable Leaderboard for NLP Introduction | Website | Download | Backend | Paper | Video | Bib Introduction ExplainaBoard is an i

NeuLab 319 Dec 20, 2022
text to speech toolkit. 好用的中文语音合成工具箱,包含语音编码器、语音合成器、声码器和可视化模块。

ttskit Text To Speech Toolkit: 语音合成工具箱。 安装 pip install -U ttskit 注意 可能需另外安装的依赖包:torch,版本要求torch=1.6.0,=1.7.1,根据自己的实际环境安装合适cuda或cpu版本的torch。 ttskit的

KDD 483 Jan 04, 2023
This is the offline-training-pipeline for our project.

offline-training-pipeline This is the offline-training-pipeline for our project. We adopt the offline training and online prediction Machine Learning

0 Apr 22, 2022
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper

Zhilin Yang 3.3k Dec 28, 2022
Official PyTorch implementation of Time-aware Large Kernel (TaLK) Convolutions (ICML 2020)

Time-aware Large Kernel (TaLK) Convolutions (Lioutas et al., 2020) This repository contains the source code, pre-trained models, as well as instructio

Vasileios Lioutas 28 Dec 07, 2022
A library that integrates huggingface transformers with the world of fastai, giving fastai devs everything they need to train, evaluate, and deploy transformer specific models.

blurr A library that integrates huggingface transformers with version 2 of the fastai framework Install You can now pip install blurr via pip install

ohmeow 253 Dec 31, 2022
Source code of paper "BP-Transformer: Modelling Long-Range Context via Binary Partitioning"

BP-Transformer This repo contains the code for our paper BP-Transformer: Modeling Long-Range Context via Binary Partition Zihao Ye, Qipeng Guo, Quan G

Zihao Ye 119 Nov 14, 2022
ttslearn: Library for Pythonで学ぶ音声合成 (Text-to-speech with Python)

ttslearn: Library for Pythonで学ぶ音声合成 (Text-to-speech with Python) 日本語は以下に続きます (Japanese follows) English: This book is written in Japanese and primaril

Ryuichi Yamamoto 189 Dec 29, 2022
An implementation of the Pay Attention when Required transformer

Pay Attention when Required (PAR) Transformer-XL An implementation of the Pay Attention when Required transformer from the paper: https://arxiv.org/pd

7 Aug 11, 2022
My Implementation for the paper EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks using Tensorflow

Easy Data Augmentation Implementation This repository contains my Implementation for the paper EDA: Easy Data Augmentation Techniques for Boosting Per

Aflah 9 Oct 31, 2022