I have used run_model and then test_model. Now i want to visualize the output or want to know want can be the prediction. How to do that.
2022-09-02 04:47:19,613 - INFO - Log directory: ./libcity/log
2022-09-02 04:47:19,613 - INFO - {'task': 'traffic_state_pred', 'model': 'RNN', 'dataset': 'METR_LA', 'saved_model': True, 'train': True, 'batch_size': 2, 'dataset_class': 'TrafficStatePointDataset', 'executor': 'TrafficStateExecutor', 'evaluator': 'TrafficStateEvaluator', 'rnn_type': 'RNN', 'hidden_size': 64, 'num_layers': 1, 'dropout': 0, 'bidirectional': False, 'teacher_forcing_ratio': 0, 'scaler': 'standard', 'load_external': True, 'normal_external': False, 'ext_scaler': 'none', 'add_time_in_day': True, 'add_day_in_week': False, 'max_epoch': 100, 'learner': 'adam', 'learning_rate': 0.01, 'lr_decay': True, 'lr_scheduler': 'multisteplr', 'lr_decay_ratio': 0.1, 'steps': [5, 20, 40, 70], 'clip_grad_norm': True, 'max_grad_norm': 5, 'use_early_stop': True, 'patience': 50, 'cache_dataset': True, 'num_workers': 0, 'pad_with_last_sample': True, 'train_rate': 0.7, 'eval_rate': 0.1, 'input_window': 12, 'output_window': 12, 'gpu': True, 'gpu_id': 0, 'train_loss': 'none', 'epoch': 0, 'weight_decay': 0, 'lr_epsilon': 1e-08, 'lr_beta1': 0.9, 'lr_beta2': 0.999, 'lr_alpha': 0.99, 'lr_momentum': 0, 'step_size': 10, 'lr_T_max': 30, 'lr_eta_min': 0, 'lr_patience': 10, 'lr_threshold': 0.0001, 'log_level': 'INFO', 'log_every': 1, 'load_best_epoch': True, 'hyper_tune': False, 'metrics': ['MAE', 'MAPE', 'MSE', 'RMSE', 'masked_MAE', 'masked_MAPE', 'masked_MSE', 'masked_RMSE', 'R2', 'EVAR'], 'evaluator_mode': 'single', 'save_mode': ['csv'], 'geo': {'including_types': ['Point'], 'Point': {}}, 'rel': {'including_types': ['geo'], 'geo': {'cost': 'num'}}, 'dyna': {'including_types': ['state'], 'state': {'entity_id': 'geo_id', 'traffic_speed': 'num'}}, 'data_col': ['traffic_speed'], 'weight_col': 'cost', 'data_files': ['METR_LA'], 'geo_file': 'METR_LA', 'rel_file': 'METR_LA', 'output_dim': 1, 'time_intervals': 300, 'init_weight_inf_or_zero': 'inf', 'set_weight_link_or_dist': 'dist', 'calculate_weight_adj': True, 'weight_adj_epsilon': 0.1, 'device': device(type='cuda', index=0), 'exp_id': 41266}
2022-09-02 04:47:20,120 - INFO - Loaded file METR_LA.geo, num_nodes=207
2022-09-02 04:47:20,130 - INFO - set_weight_link_or_dist: dist
2022-09-02 04:47:20,131 - INFO - init_weight_inf_or_zero: inf
2022-09-02 04:47:20,160 - INFO - Loaded file METR_LA.rel, shape=(207, 207)
2022-09-02 04:47:20,160 - INFO - Start Calculate the weight by Gauss kernel!
2022-09-02 04:47:20,161 - INFO - Loading file METR_LA.dyna
2022-09-02 04:47:25,775 - INFO - Loaded file METR_LA.dyna, shape=(34272, 207, 1)
tcmalloc: large alloc 1361199104 bytes == 0xb406c000 @ 0x7f1d833a21e7 0x7f1d2f40c46e 0x7f1d2f45cc2b 0x7f1d2f45ccc8 0x7f1d2f503e70 0x7f1d2f50459c 0x7f1d2f5046bd 0x4bc4ab 0x7f1d2f449ef7 0x59371f 0x515244 0x549576 0x593fce 0x548ae9 0x5127f1 0x549e0e 0x4bca8a 0x7f1d2f449ef7 0x59371f 0x515244 0x549576 0x593fce 0x548ae9 0x5127f1 0x593dd7 0x511e2c 0x593dd7 0x511e2c 0x593dd7 0x511e2c 0x593dd7
tcmalloc: large alloc 1361199104 bytes == 0x105b20000 @ 0x7f1d833a21e7 0x7f1d2f40c46e 0x7f1d2f45cc2b 0x7f1d2f45ccc8 0x7f1d2f503e70 0x7f1d2f50459c 0x7f1d2f5046bd 0x4bc4ab 0x7f1d2f449ef7 0x59371f 0x515244 0x549576 0x593fce 0x548ae9 0x5127f1 0x549e0e 0x4bca8a 0x7f1d2f449ef7 0x59371f 0x515244 0x549576 0x593fce 0x548ae9 0x5127f1 0x593dd7 0x511e2c 0x593dd7 0x511e2c 0x593dd7 0x511e2c 0x593dd7
tcmalloc: large alloc 1361199104 bytes == 0x156d44000 @ 0x7f1d833a21e7 0x7f1d2f40c46e 0x7f1d2f45cc2b 0x7f1d2f45ccc8 0x7f1d2f503e70 0x7f1d2f50459c 0x7f1d2f5046bd 0x4bc4ab 0x7f1d2f449ef7 0x59371f 0x515244 0x549576 0x593fce 0x548ae9 0x51566f 0x593dd7 0x511e2c 0x593dd7 0x511e2c 0x593dd7 0x511e2c 0x549576 0x604173 0x5f5506 0x5f8c6c 0x5f9206 0x64faf2 0x64fc4e 0x7f1d82f9fc87 0x5b621a
2022-09-02 04:47:32,297 - INFO - Dataset created
2022-09-02 04:47:32,297 - INFO - x shape: (34249, 12, 207, 2), y shape: (34249, 12, 207, 2)
2022-09-02 04:47:32,303 - INFO - train x: (23974, 12, 207, 2), y: (23974, 12, 207, 2)
2022-09-02 04:47:32,303 - INFO - eval x: (3425, 12, 207, 2), y: (3425, 12, 207, 2)
2022-09-02 04:47:32,303 - INFO - test x: (6850, 12, 207, 2), y: (6850, 12, 207, 2)
2022-09-02 04:48:57,401 - INFO - Saved at ./libcity/cache/dataset_cache/point_based_METR_LA_12_12_0.7_0.1_standard_2_True_True_False_True.npz
2022-09-02 04:48:57,800 - INFO - StandardScaler mean: 54.40592829587626, std: 19.493739270573098
2022-09-02 04:48:57,800 - INFO - NoneScaler
tcmalloc: large alloc 1905647616 bytes == 0x7f1c824e8000 @ 0x7f1d833a21e7 0x7f1d2f40c46e 0x7f1d2f45cc2b 0x7f1d2f45ff73 0x7f1d2f5044f4 0x7f1d2f5046bd 0x4bc4ab 0x7f1d2f449ef7 0x59371f 0x515244 0x549576 0x593fce 0x548ae9 0x5127f1 0x549e0e 0x593fce 0x548ae9 0x5127f1 0x593dd7 0x511e2c 0x549576 0x604173 0x5f5506 0x5f8c6c 0x5f9206 0x64faf2 0x64fc4e 0x7f1d82f9fc87 0x5b621a
tcmalloc: large alloc 1905647616 bytes == 0x7f1c10b8a000 @ 0x7f1d833a21e7 0x7f1d2f40c46e 0x7f1d2f45cc2b 0x7f1d2f45ccc8 0x7f1d2f503e70 0x7f1d2f50459c 0x7f1d2f5046bd 0x4bc4ab 0x7f1d2f449ef7 0x59371f 0x515244 0x549576 0x593fce 0x548ae9 0x5127f1 0x549e0e 0x593fce 0x548ae9 0x5127f1 0x593dd7 0x511e2c 0x549576 0x604173 0x5f5506 0x5f8c6c 0x5f9206 0x64faf2 0x64fc4e 0x7f1d82f9fc87 0x5b621a
Using backend: pytorch
2022-09-02 04:49:03,891 - INFO - You select rnn_type RNN in RNN!
2022-09-02 04:49:07,711 - INFO - Generating grammar tables from /usr/lib/python3.7/lib2to3/Grammar.txt
2022-09-02 04:49:07,730 - INFO - Generating grammar tables from /usr/lib/python3.7/lib2to3/PatternGrammar.txt
2022-09-02 04:49:09,810 - INFO - RNN(
(rnn): RNN(414, 64)
(fc): Linear(in_features=64, out_features=207, bias=True)
)
2022-09-02 04:49:09,810 - INFO - rnn.weight_ih_l0 torch.Size([64, 414]) cuda:0 True
2022-09-02 04:49:09,811 - INFO - rnn.weight_hh_l0 torch.Size([64, 64]) cuda:0 True
2022-09-02 04:49:09,811 - INFO - rnn.bias_ih_l0 torch.Size([64]) cuda:0 True
2022-09-02 04:49:09,811 - INFO - rnn.bias_hh_l0 torch.Size([64]) cuda:0 True
2022-09-02 04:49:09,811 - INFO - fc.weight torch.Size([207, 64]) cuda:0 True
2022-09-02 04:49:09,811 - INFO - fc.bias torch.Size([207]) cuda:0 True
2022-09-02 04:49:09,811 - INFO - Total parameter numbers: 44175
2022-09-02 04:49:09,811 - INFO - You select adam
optimizer.
2022-09-02 04:49:09,811 - INFO - You select multisteplr
lr_scheduler.
2022-09-02 04:49:09,812 - WARNING - Received none train loss func and will use the loss func defined in the model.
2022-09-02 04:49:09,831 - INFO - Result shape is torch.Size([2, 12, 207, 1])
2022-09-02 04:49:09,831 - INFO - Success test the model!