Official page of Patchwork (RA-L'21 w/ IROS'21)

Overview

Patchwork

Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor", which is accepted by RA-L with IROS'21 option

[Video] [Preprint Paper] [Project Wiki]

Patchwork Concept of our method (CZM & GLE)

It's an overall updated version of R-GPF of ERASOR [Code] [Paper].


Demo

KITTI 00

Rough Terrain


Characteristics

  • Single hpp file (include/patchwork/patchwork.hpp)

  • Robust ground consistency

As shown in the demo videos and below figure, our method shows the most promising robust performance compared with other state-of-the-art methods, especially, our method focuses on the little perturbation of precision/recall as shown in this figure.

Please kindly note that the concept of traversable area and ground is quite different! Please refer to our paper.

Contents

  1. Test Env.
  2. Requirements
  3. How to Run Patchwork
  4. Citation

Test Env.

The code is tested successfully at

  • Linux 18.04 LTS
  • ROS Melodic

Requirements

ROS Setting

    1. Install ROS on a machine.
    1. Thereafter, jsk-visualization is required to visualize Ground Likelihood Estimation status.
sudo apt-get install ros-melodic-jsk-recognition
sudo apt-get install ros-melodic-jsk-common-msgs
sudo apt-get install ros-melodic-jsk-rviz-plugins
mkdir -p ~/catkin_ws/src
cd ~/catkin_ws/src
git clone https://github.com/LimHyungTae/patchwork.git
cd .. && catkin build patchwork 

How to Run Patchwork

We provide three examples

  • Offline KITTI dataset
  • Online (ROS Callback) KITTI dataset
  • Own dataset using pcd files

Offline KITTI dataset

  1. Download SemanticKITTI Odometry dataset (We also need labels since we also open the evaluation code! :)

  2. Set the data_path in launch/offline_kitti.launch for your machine.

The data_path consists of velodyne folder and labels folder as follows:

data_path (e.g. 00, 01, ..., or 10)
_____velodyne
     |___000000.bin
     |___000001.bin
     |___000002.bin
     |...
_____labels
     |___000000.label
     |___000001.label
     |___000002.label
     |...
_____...
   
  1. Run launch file
roslaunch patchwork offline_kitti.launch

You can directly feel the speed of Patchwork! ๐Ÿ˜‰

Online (ROS Callback) KITTI dataset

We also provide rosbag example. If you run our patchwork via rosbag, please refer to this example.

  1. Download readymade rosbag
wget https://urserver.kaist.ac.kr/publicdata/patchwork/kitti_00_xyzilid.bag
  1. After building this package, run the roslaunch as follows:
roslaunch patchwork rosbag_kitti.launch
  1. Then play the rosbag file in another command
rosbag play kitti_00_xyzilid.bag

Own dataset using pcd files

Please refer to /nodes/offilne_own_data.cpp.

(Note that in your own data format, there may not exist ground truth labels!)

Be sure to set right params. Otherwise, your results may be wrong as follows:

W/ wrong params After setting right params

For better understanding of the parameters of Patchwork, please read our wiki, 4. IMPORTANT: Setting Parameters of Patchwork in Your Own Env..

Offline (Using *.pcd or *.bin file)

  1. Utilize /nodes/offilne_own_data.cpp

  2. Please check the output by following command and corresponding files:

roslaunch patchwork offline_ouster128.launch

Online (via rosbag)

  1. Utilize rosbag_kitti.launch.

  2. To do so, remap the topic of subscriber, e.g. add remap line as follows:

<remap from="/node" to="$YOUR_LIDAR_TOPIC_NAME$"/>
  1. In addition, minor modification of ros_kitti.cpp is necessary by refering to offline_own_data.cpp.

Citation

If you use our code or method in your work, please consider citing the following:

@article{lim2021patchwork,
title={Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor},
author={Lim, Hyungtae and Minho, Oh and Myung, Hyun},
journal={IEEE Robotics and Automation Letters},
year={2021}
}

Description

All explanations of parameters and other experimental results will be uploaded in wiki

Contact

If you have any questions, please let me know:

TODO List

  • Add ROS support
  • Add preprint paper
  • Add demo videos
  • Add own dataset examples
  • Update wiki

Owner
Hyungtae Lim
Ph.D Candidate of URL lab. @ KAIST, South Korea
Hyungtae Lim
AI grand challenge 2020 Repo (Speech Recognition Track)

KorBERT๋ฅผ ํ™œ์šฉํ•œ ํ•œ๊ตญ์–ด ํ…์ŠคํŠธ ๊ธฐ๋ฐ˜ ์œ„ํ˜‘ ์ƒํ™ฉ์ธ์ง€(2020 ์ธ๊ณต์ง€๋Šฅ ๊ทธ๋žœ๋“œ ์ฑŒ๋ฆฐ์ง€) ๋ณธ ํ”„๋กœ์ ํŠธ๋Š” ETRI์—์„œ ์ œ๊ณต๋œ ํ•œ๊ตญ์–ด korBERT ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์—ฌ ํญ๋ ฅ ๊ธฐ๋ฐ˜ ํ•œ๊ตญ์–ด ํ…์ŠคํŠธ๋ฅผ ๋ถ„๋ฅ˜ํ•˜๋Š” ๋‹ค์–‘ํ•œ ๋ถ„๋ฅ˜ ๋ชจ๋ธ๋“ค์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ๊ฐœ๋ฐœ์ž๋“ค์ด ์ฐธ์—ฌํ•œ 2020 ์ธ๊ณต์ง€

Young-Seok Choi 23 Jan 25, 2022
3D HourGlass Networks for Human Pose Estimation Through Videos

3D-HourGlass-Network 3D CNN Based Hourglass Network for Human Pose Estimation (3D Human Pose) from videos. This was my summer'18 research project. Dis

Naman Jain 51 Jan 02, 2023
PowerGridworld: A Framework for Multi-Agent Reinforcement Learning in Power Systems

PowerGridworld provides users with a lightweight, modular, and customizable framework for creating power-systems-focused, multi-agent Gym environments that readily integrate with existing training fr

National Renewable Energy Laboratory 37 Dec 17, 2022
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

203 Dec 30, 2022
Dictionary Learning with Uniform Sparse Representations for Anomaly Detection

Dictionary Learning with Uniform Sparse Representations for Anomaly Detection Implementation of the Uniform DL Representation for AD algorithm describ

Paul Irofti 1 Nov 23, 2022
A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

Biomedical Computer Vision @ Uniandes 52 Dec 19, 2022
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.

pyHype: Computational Fluid Dynamics in Python pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve

Mohamed Khalil 21 Nov 22, 2022
Exploiting a Zoo of Checkpoints for Unseen Tasks

Exploiting a Zoo of Checkpoints for Unseen Tasks This repo includes code to reproduce all results in the above Neurips paper, authored by Jiaji Huang,

Baidu Research 8 Sep 06, 2022
CS583: Deep Learning

CS583: Deep Learning

Shusen Wang 2.6k Dec 30, 2022
Code for Learning to Segment The Tail (LST)

Learning to Segment the Tail [arXiv] In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from th

47 Nov 07, 2022
Official Implementation of Domain-Aware Universal Style Transfer

Domain Aware Universal Style Transfer Official Pytorch Implementation of 'Domain Aware Universal Style Transfer' (ICCV 2021) Domain Aware Universal St

KibeomHong 80 Dec 30, 2022
Generative Flow Networks

Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation Implementation for our paper, submitted to NeurIPS 2021 (also chec

Emmanuel Bengio 381 Jan 04, 2023
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding his way.

GuidEye A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding h

Munal Jain 0 Aug 09, 2022
Experiments for distributed optimization algorithms

Network-Distributed Algorithm Experiments -- This repository contains a set of optimization algorithms and objective functions, and all code needed to

Boyue Li 40 Dec 04, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 410 Jan 03, 2023
Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

The Face Synthetics dataset Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels. It was introduced in ou

Microsoft 608 Jan 02, 2023