Random Directed Acyclic Graph Generator

Overview

DAG_Generator

Random Directed Acyclic Graph Generator

verison1.0

简介

工作流通常由DAG(有向无环图)来定义,其中每个计算任务$T_i$由一个顶点(node,task,vertex)表示。同时,任务之间的每个数据或控制依赖性由一条加权的有向边$E_{ij}$表示。每个有向边$E_{ij}$表示$T_i$是$T_j$的父任务,$T_j$只能在其所有父任务完成后执行。为了方便操作和展示,一般在所有任务之前设立一个Start虚拟节点,作为所有没有父任务节点的父节点;同理,在所有任务之后设立一个Exit虚拟节点,作为所有没有子任务节点的子节点,这两个虚拟节点都没有计算资源需求。

此程序用于随机生成有向无环图(DAG)。本来的想法是按照文献[1]的方法来生成DAG,但是原文没有给出代码,难以实现,所以就仿照文章的设定来生成DAG。

确定表示一个DAG需要三个数据,分别是是节点连接信息,各节点的父节点数,各节点的子节点数。由这三个元素可以确定一个独立的DAG。例如一个10个节点的DAG:

Edges: [(1, 5), (1, 6), (2, 4), (2, 6), (3, 6), (4, 7), (4, 9), (5, 9), (5, 7), (6, 7), ('Start', 1), ('Start', 2), ('Start', 3), ('Start', 8), ('Start', 10), (7, 'Exit'), (8, 'Exit'), (9, 'Exit'), (10, 'Exit')]

In_degree: [1, 1, 1, 1, 1, 3, 3, 1, 2, 1] #不包括虚拟节点

out_degree: [2, 2, 1, 2, 2, 1, 1, 1, 1, 1] #不包括虚拟节点

DAG

参数设定
set_dag_size = [20,30,40,50,60,70,80,90]             #random number of DAG  nodes       
set_max_out = [1,2,3,4,5]                            #max out_degree of one node
set_alpha = [0.5,1.0,1.5]                            #DAG shape
set_beta = [0.0,0.5,1.0,2.0]                         #DAG regularity
  1. set_dag_size : 设定的DAG任务大小,有[20,30,40,50,60,70,80,90],默认为20。
  2. set_max_out: 设定的一个节点最大出度,有[1,2,3,4,5],默认为2。
  3. set_alpha : 设定DAG控制形状的参数,有[0.5,1.0,1.5],默认为1.0。
  4. set_beta :设定DAG每层宽度的规则度参数,有[0.0,0.5,1.0,2.0] ,默认为1.0。

DAG的层数(深度)被设置为$\sqrt{set_dag_size}/set_alpha$, $\alpha$控制着DAG的Fat,$\alpha$越小,DAG越瘦长,$\alpha$越大,DAG越肥密。

DAGS

每层的宽度被随机设置为均值为$set_dag_size/length$,标准差为$\beta$的正态分布。$\beta$越大,DAG越不规则。

绘制

使用networkx库绘制DAG图。

def plot_DAG(edges,postion):
    g1 = nx.DiGraph()
    g1.add_edges_from(edges)
    nx.draw_networkx(g1, arrows=True, pos=postion)
    plt.savefig("DAG.png", format="PNG")
    return plt.clf

n = 30,max_out = 3, $\alpha$ = 1, $\beta$ = 1.0

DAG

n = 30,max_out = 3, $\alpha$ = 0.5, $\beta$ = 1.0

DAG

n = 30,max_out = 3, $\alpha$ = 1.5, $\beta$ = 1.0

DAG

代码
import random,math,argparse
import numpy as np
from numpy.random.mtrand import sample
from matplotlib import pyplot as plt
import networkx as nx

parser = argparse.ArgumentParser()
parser.add_argument('--mode', default='default', type=str)#parameters setting
parser.add_argument('--n', default=10, type=int)          #number of DAG  nodes
parser.add_argument('--max_out', default=2, type=float)   #max out_degree of one node
parser.add_argument('--alpha',default=1,type=float)       #shape 
parser.add_argument('--beta',default=1.0,type=float)      #regularity
args = parser.parse_args()

set_dag_size = [20,30,40,50,60,70,80,90]             #random number of DAG  nodes       
set_max_out = [1,2,3,4,5]                              #max out_degree of one node
set_alpha = [0.5,1.0,2.0]                            #DAG shape
set_beta = [0.0,0.5,1.0,2.0]                         #DAG regularity

def DAGs_generate(mode = 'default',n = 10,max_out = 2,alpha = 1,beta = 1.0):
    ##############################################initialize###########################################
    args.mode = mode
    if args.mode != 'default':
        args.n = random.sample(set_dag_size,1)[0]
        args.max_out = random.sample(set_max_out,1)[0]
        args.alpha = random.sample(set_alpha,1)[0]
        args.beta = random.sample(set_alpha,1)[0]
    else: 
        args.n = n
        args.max_out = max_out
        args.alpha = alpha
        args.beta = beta

    length = math.floor(math.sqrt(args.n)/args.alpha)
    mean_value = args.n/length
    random_num = np.random.normal(loc = mean_value, scale = args.beta,  size = (length,1))    
    ###############################################division############################################
    position = {'Start':(0,4),'Exit':(10,4)}
    generate_num = 0
    dag_num = 1
    dag_list = [] 
    for i in range(len(random_num)):
        dag_list.append([]) 
        for j in range(math.ceil(random_num[i])):
            dag_list[i].append(j)
        generate_num += math.ceil(random_num[i])

    if generate_num != args.n:
        if generate_num<args.n:
            for i in range(args.n-generate_num):
                index = random.randrange(0,length,1)
                dag_list[index].append(len(dag_list[index]))
        if generate_num>args.n:
            i = 0
            while i < generate_num-args.n:
                index = random.randrange(0,length,1)
                if len(dag_list[index])==1:
                    i = i-1 if i!=0 else 0
                else:
                    del dag_list[index][-1]
                i += 1

    dag_list_update = []
    pos = 1
    max_pos = 0
    for i in range(length):
        dag_list_update.append(list(range(dag_num,dag_num+len(dag_list[i]))))
        dag_num += len(dag_list_update[i])
        pos = 1
        for j in dag_list_update[i]:
            position[j] = (3*(i+1),pos)
            pos += 5
        max_pos = pos if pos > max_pos else max_pos
        position['Start']=(0,max_pos/2)
        position['Exit']=(3*(length+1),max_pos/2)

    ############################################link###################################################
    into_degree = [0]*args.n            
    out_degree = [0]*args.n             
    edges = []                          
    pred = 0

    for i in range(length-1):
        sample_list = list(range(len(dag_list_update[i+1])))
        for j in range(len(dag_list_update[i])):
            od = random.randrange(1,args.max_out+1,1)
            od = len(dag_list_update[i+1]) if len(dag_list_update[i+1])<od else od
            bridge = random.sample(sample_list,od)
            for k in bridge:
                edges.append((dag_list_update[i][j],dag_list_update[i+1][k]))
                into_degree[pred+len(dag_list_update[i])+k]+=1
                out_degree[pred+j]+=1 
        pred += len(dag_list_update[i])


    ######################################create start node and exit node################################
    for node,id in enumerate(into_degree):#给所有没有入边的节点添加入口节点作父亲
        if id ==0:
            edges.append(('Start',node+1))
            into_degree[node]+=1

    for node,od in enumerate(out_degree):#给所有没有出边的节点添加出口节点作儿子
        if od ==0:
            edges.append((node+1,'Exit'))
            out_degree[node]+=1

    #############################################plot##################################################
    return edges,into_degree,out_degree,position

参考

[1] [List Scheduling Algorithm for Heterogeneous Systems by an Optimistic Cost Table](https://ieeexplore.ieee.org/abstract/document/6471969/)

[2] Building DAGs / Directed Acyclic Graphs with Python

[3] DAG Dependencies

[4] Networkx Lirbrary

[5] Python生成依赖性应用的DAG(有向无环图)拓扑

Owner
Livion
無限進步 Email: [email protected] Wechat: Livion2018
Livion
An official implementation for "CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval"

The implementation of paper CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval. CLIP4Clip is a video-text retrieval model based

ArrowLuo 456 Jan 06, 2023
Google's Meena transformer chatbot implementation

Here's my attempt at recreating Meena, a state of the art chatbot developed by Google Research and described in the paper Towards a Human-like Open-Domain Chatbot.

Francesco Pham 94 Dec 25, 2022
Chatbot with Pytorch, Python & Nextjs

Installation Instructions Make sure that you have Python 3, gcc, venv, and pip installed. Clone the repository $ git clone https://github.com/sahr

Rohit Sah 0 Dec 11, 2022
An official repository for tutorials of Probabilistic Modelling and Reasoning (2021/2022) - a University of Edinburgh master's course.

PMR computer tutorials on HMMs (2021-2022) This is a repository for computer tutorials of Probabilistic Modelling and Reasoning (2021/2022) - a Univer

Vaidotas Šimkus 10 Dec 06, 2022
This repository structures data in title, summary, tags, sentiment given a fragment of a conversation

Understand-conversation-AI This repository structures data in title, summary, tags, sentiment given a fragment of a conversation How to install: pip i

Juan Camilo López Montes 1 Jan 11, 2022
This is a really simple text-to-speech app made with python and tkinter.

Tkinter Text-to-Speech App by Souvik Roy This is a really simple tkinter app which converts the text you have entered into a speech. It is created wit

Souvik Roy 1 Dec 21, 2021
华为商城抢购手机的Python脚本 Python script of Huawei Store snapping up mobile phones

HUAWEI STORE GO 2021 说明 基于Python3+Selenium的华为商城抢购爬虫脚本,修改自近两年没更新的项目BUY-HW,为女神抢Nova 8(什么时候华为开始学小米玩饥饿营销了?) 原项目的登陆以及抢购部分已经不可用,本项目对原项目进行了改正以适应新华为商城,并增加一些功能

ZhangLiang 111 Dec 22, 2022
The following links explain a bit the idea of semantic search and how search mechanisms work by doing retrieve and rerank

Main Idea The following links explain a bit the idea of semantic search and how search mechanisms work by doing retrieve and rerank Semantic Search Re

Sergio Arnaud Gomez 2 Jan 28, 2022
Control the classic General Instrument SP0256-AL2 speech chip and AY-3-8910 sound generator with a Raspberry Pi and this Python library.

GI-Pi Control the classic General Instrument SP0256-AL2 speech chip and AY-3-8910 sound generator with a Raspberry Pi and this Python library. The SP0

Nick Bild 8 Dec 15, 2021
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 124 Jan 03, 2023
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
Revisiting Pre-trained Models for Chinese Natural Language Processing (Findings of EMNLP 2020)

This repository contains the resources in our paper "Revisiting Pre-trained Models for Chinese Natural Language Processing", which will be published i

Yiming Cui 463 Dec 30, 2022
Knowledge Management for Humans using Machine Learning & Tags

HyperTag helps humans intuitively express how they think about their files using tags and machine learning. Represent how you think using tags. Find what you look for using semantic search for your t

Ravn Tech, Inc. 166 Jan 07, 2023
This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe

Advent-of-cyber-2019-writeup This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe https://tryhackme.com/shivam007/badges/c

shivam danawale 5 Jul 17, 2022
An Analysis Toolkit for Natural Language Generation (Translation, Captioning, Summarization, etc.)

VizSeq is a Python toolkit for visual analysis on text generation tasks like machine translation, summarization, image captioning, speech translation

Facebook Research 409 Oct 28, 2022
[KBS] Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks

#Sentic GCN Introduction This repository was used in our paper: Aspect-Based Sentiment Analysis via Affective Knowledge Enhanced Graph Convolutional N

Akuchi 35 Nov 16, 2022
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform tasks on automatic speech recogniti

Soohwan Kim 26 Dec 14, 2022
Phrase-Based & Neural Unsupervised Machine Translation

Unsupervised Machine Translation This repository contains the original implementation of the unsupervised PBSMT and NMT models presented in Phrase-Bas

Facebook Research 1.5k Dec 28, 2022
Repository for the paper "Optimal Subarchitecture Extraction for BERT"

Bort Companion code for the paper "Optimal Subarchitecture Extraction for BERT." Bort is an optimal subset of architectural parameters for the BERT ar

Alexa 461 Nov 21, 2022
To classify the News into Real/Fake using Features from the Text Content of the article

Hoax-Detector Authenticity of news has now become a major problem. The Idea is to classify the News into Real/Fake using Features from the Text Conten

Aravindhan 1 Feb 09, 2022