Easily benchmark PyTorch model FLOPs, latency, throughput, max allocated memory and energy consumption

Overview

pytorch-benchmark

Easily benchmark model inference FLOPs, latency, throughput, max allocated memory and energy consumption

Install

pip install pytorch-benchmark

Usage

import torch
from torchvision.models import efficientnet_b0
from pytorch_benchmark import benchmark


model = efficientnet_b0()
sample = torch.randn(8, 3, 224, 224)  # (B, C, H, W)
results = benchmark(model, sample, num_runs=100)

Sample results 💻

Macbook Pro (16-inch, 2019), 2.6 GHz 6-Core Intel Core i7
device: cpu
flops: 401669732
machine_info:
  cpu:
    architecture: x86_64
    cores:
      physical: 6
      total: 12
    frequency: 2.60 GHz
    model: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
  gpus: null
  memory:
    available: 5.86 GB
    total: 16.00 GB
    used: 7.29 GB
  system:
    node: d40049
    release: 21.2.0
    system: Darwin
params: 5288548
timing:
  batch_size_1:
    on_device_inference:
      human_readable:
        batch_latency: 74.439 ms +/- 6.459 ms [64.604 ms, 96.681 ms]
        batches_per_second: 13.53 +/- 1.09 [10.34, 15.48]
      metrics:
        batches_per_second_max: 15.478907181264278
        batches_per_second_mean: 13.528026359855625
        batches_per_second_min: 10.343281300091244
        batches_per_second_std: 1.0922382209314958
        seconds_per_batch_max: 0.09668111801147461
        seconds_per_batch_mean: 0.07443853378295899
        seconds_per_batch_min: 0.06460404396057129
        seconds_per_batch_std: 0.006458734193132054
  batch_size_8:
    on_device_inference:
      human_readable:
        batch_latency: 509.410 ms +/- 30.031 ms [405.296 ms, 621.773 ms]
        batches_per_second: 1.97 +/- 0.11 [1.61, 2.47]
      metrics:
        batches_per_second_max: 2.4673319862230025
        batches_per_second_mean: 1.9696935126370148
        batches_per_second_min: 1.6083039834656554
        batches_per_second_std: 0.11341204895590185
        seconds_per_batch_max: 0.6217730045318604
        seconds_per_batch_mean: 0.509410228729248
        seconds_per_batch_min: 0.40529608726501465
        seconds_per_batch_std: 0.030031445467788704
Server with NVIDIA GeForce RTX 2080 and Intel Xeon 2.10GHz CPU
device: cuda
flops: 401669732
machine_info:
  cpu:
    architecture: x86_64
    cores:
      physical: 16
      total: 32
    frequency: 3.00 GHz
    model: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
  gpus:
  - memory: 8192.0 MB
    name: NVIDIA GeForce RTX 2080
  - memory: 8192.0 MB
    name: NVIDIA GeForce RTX 2080
  - memory: 8192.0 MB
    name: NVIDIA GeForce RTX 2080
  - memory: 8192.0 MB
    name: NVIDIA GeForce RTX 2080
  memory:
    available: 119.98 GB
    total: 125.78 GB
    used: 4.78 GB
  system:
    node: monster
    release: 4.15.0-167-generic
    system: Linux
max_inference_memory: 736250368
params: 5288548
post_inference_memory: 21402112
pre_inference_memory: 21402112
timing:
  batch_size_1:
    cpu_to_gpu:
      human_readable:
        batch_latency: "144.815 \xB5s +/- 16.103 \xB5s [136.614 \xB5s, 272.751 \xB5\
          s]"
        batches_per_second: 6.96 K +/- 535.06 [3.67 K, 7.32 K]
      metrics:
        batches_per_second_max: 7319.902268760908
        batches_per_second_mean: 6962.865857677197
        batches_per_second_min: 3666.3496503496503
        batches_per_second_std: 535.0581873859935
        seconds_per_batch_max: 0.0002727508544921875
        seconds_per_batch_mean: 0.00014481544494628906
        seconds_per_batch_min: 0.0001366138458251953
        seconds_per_batch_std: 1.6102982159292097e-05
    gpu_to_cpu:
      human_readable:
        batch_latency: "106.168 \xB5s +/- 17.829 \xB5s [53.167 \xB5s, 248.909 \xB5\
          s]"
        batches_per_second: 9.64 K +/- 1.60 K [4.02 K, 18.81 K]
      metrics:
        batches_per_second_max: 18808.538116591928
        batches_per_second_mean: 9639.942102368092
        batches_per_second_min: 4017.532567049808
        batches_per_second_std: 1595.7983033708472
        seconds_per_batch_max: 0.00024890899658203125
        seconds_per_batch_mean: 0.00010616779327392578
        seconds_per_batch_min: 5.316734313964844e-05
        seconds_per_batch_std: 1.7829135190772566e-05
    on_device_inference:
      human_readable:
        batch_latency: "15.567 ms +/- 546.154 \xB5s [15.311 ms, 19.261 ms]"
        batches_per_second: 64.31 +/- 1.96 [51.92, 65.31]
      metrics:
        batches_per_second_max: 65.31149174711928
        batches_per_second_mean: 64.30692850265713
        batches_per_second_min: 51.918698784442846
        batches_per_second_std: 1.9599322351815833
        seconds_per_batch_max: 0.019260883331298828
        seconds_per_batch_mean: 0.015567030906677246
        seconds_per_batch_min: 0.015311241149902344
        seconds_per_batch_std: 0.0005461537255227954
    total:
      human_readable:
        batch_latency: "15.818 ms +/- 549.873 \xB5s [15.561 ms, 19.461 ms]"
        batches_per_second: 63.29 +/- 1.92 [51.38, 64.26]
      metrics:
        batches_per_second_max: 64.26476266356143
        batches_per_second_mean: 63.28565696640637
        batches_per_second_min: 51.38378232692614
        batches_per_second_std: 1.9198343850767468
        seconds_per_batch_max: 0.019461393356323242
        seconds_per_batch_mean: 0.01581801414489746
        seconds_per_batch_min: 0.015560626983642578
        seconds_per_batch_std: 0.0005498731526138171
  batch_size_8:
    cpu_to_gpu:
      human_readable:
        batch_latency: "805.674 \xB5s +/- 157.254 \xB5s [773.191 \xB5s, 2.303 ms]"
        batches_per_second: 1.26 K +/- 97.51 [434.24, 1.29 K]
      metrics:
        batches_per_second_max: 1293.3407338883749
        batches_per_second_mean: 1259.5653105357776
        batches_per_second_min: 434.23791282741485
        batches_per_second_std: 97.51424036939879
        seconds_per_batch_max: 0.002302885055541992
        seconds_per_batch_mean: 0.000805673599243164
        seconds_per_batch_min: 0.0007731914520263672
        seconds_per_batch_std: 0.0001572538140613121
    gpu_to_cpu:
      human_readable:
        batch_latency: "104.215 \xB5s +/- 12.658 \xB5s [59.605 \xB5s, 128.031 \xB5\
          s]"
        batches_per_second: 9.81 K +/- 1.76 K [7.81 K, 16.78 K]
      metrics:
        batches_per_second_max: 16777.216
        batches_per_second_mean: 9806.840626578907
        batches_per_second_min: 7810.621973929236
        batches_per_second_std: 1761.6008872740726
        seconds_per_batch_max: 0.00012803077697753906
        seconds_per_batch_mean: 0.00010421514511108399
        seconds_per_batch_min: 5.9604644775390625e-05
        seconds_per_batch_std: 1.2658293070174213e-05
    on_device_inference:
      human_readable:
        batch_latency: "16.623 ms +/- 759.017 \xB5s [16.301 ms, 22.584 ms]"
        batches_per_second: 60.26 +/- 2.22 [44.28, 61.35]
      metrics:
        batches_per_second_max: 61.346243290283894
        batches_per_second_mean: 60.25881046175457
        batches_per_second_min: 44.27827629162004
        batches_per_second_std: 2.2193085956672296
        seconds_per_batch_max: 0.02258443832397461
        seconds_per_batch_mean: 0.01662288188934326
        seconds_per_batch_min: 0.01630091667175293
        seconds_per_batch_std: 0.0007590167680596548
    total:
      human_readable:
        batch_latency: "17.533 ms +/- 836.015 \xB5s [17.193 ms, 23.896 ms]"
        batches_per_second: 57.14 +/- 2.20 [41.85, 58.16]
      metrics:
        batches_per_second_max: 58.16374528511205
        batches_per_second_mean: 57.140338855126565
        batches_per_second_min: 41.84762740950632
        batches_per_second_std: 2.1985066663972677
        seconds_per_batch_max: 0.023896217346191406
        seconds_per_batch_mean: 0.01753277063369751
        seconds_per_batch_min: 0.017192840576171875
        seconds_per_batch_std: 0.0008360147274630088

Limitations

Usage assumptions:

  • The model has as a __call__ method that takes the sample, i.e. model(sample).
  • The Model also works if the sample had a batch size of 1 (first dimension).

Feature limitations:

  • Allocated memory uses torch.cuda.max_memory_allocated, which is only available if the model resides on a CUDA device.
  • Energy consumption can only be measured on NVIDIA Jetson platforms at the moment.

Citation

If you like the tool and use it in you research, please consider citing it:

@article{hedegaard2022torchbenchmark,
  title={PyTorch Benchmark},
  author={Lukas Hedegaard},
  journal={GitHub. Note: https://github.com/LukasHedegaard/pytorch-benchmark},
  year={2022}
}
You might also like...
SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification
SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

Segcache: a memory-efficient and scalable in-memory key-value cache for small objects

Segcache: a memory-efficient and scalable in-memory key-value cache for small objects This repo contains the code of Segcache described in the followi

Demo for the paper
Demo for the paper "Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation"

Streaming speaker diarization Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation by Juan Manuel Coria, Hervé

Predict the latency time of the deep learning models

Deep Neural Network Prediction Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num

Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

This is the official repository for evaluation on the NoW Benchmark Dataset. The goal of the NoW benchmark is to introduce a standard evaluation metric to measure the accuracy and robustness of 3D face reconstruction methods from a single image under variations in viewing angle, lighting, and common occlusions.
PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"

Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape

PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Comments
  • torch cuda synchronize on GPUs?

    torch cuda synchronize on GPUs?

    Hello,

    Very happy to see your repo.

    I have tested the code and found that for the GPU tests, there may lack of torch synchronize when computing the device time. I am not sure how this may impact the results but I think it would make difference.

    What do you think?

    Best,

    opened by jizongFox 1
Releases(0.3.5)
Owner
Lukas Hedegaard
PhD Student | AI Researcher | Open Source Contributor
Lukas Hedegaard
Custom Implementation of Non-Deep Networks

ParNet Custom Implementation of Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Official Repository https

Pritama Kumar Nayak 20 May 27, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
Automatically replace ONNX's RandomNormal node with Constant node.

onnx-remove-random-normal This is a script to replace RandomNormal node with Constant node. Example Imagine that we have something ONNX model like the

Masashi Shibata 1 Dec 11, 2021
Tgbox-bench - Simple TGBOX upload speed benchmark

TGBOX Benchmark This script will benchmark upload speed to TGBOX storage. Build

Non 1 Jan 09, 2022
Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python

deepface Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid

Kushal Shingote 2 Feb 10, 2022
[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment

CoRe Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou This is the PyTorch implementation for ICCV paper Group-aware Contrastive

Xumin Yu 31 Dec 24, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
Inteligência artificial criada para realizar interação social com idosos.

IA SONIA 4.0 A SONIA foi inspirada no assistente mais famoso do mundo e muito bem conhecido JARVIS. Todo mundo algum dia ja sonhou em ter o seu própri

Vinícius Azevedo 2 Oct 21, 2021
All of the figures and notebooks for my deep learning book, for free!

"Deep Learning - A Visual Approach" by Andrew Glassner This is the official repo for my book from No Starch Press. Ordering the book My book is called

Andrew Glassner 227 Jan 04, 2023
Graph Analysis From Scratch

Graph Analysis From Scratch Goal In this notebook we wanted to implement some functionalities to analyze a weighted graph only by using algorithms imp

Arturo Ghinassi 0 Sep 17, 2022
GluonMM is a library of transformer models for computer vision and multi-modality research

GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon

42 Dec 02, 2022
Open standard for machine learning interoperability

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides

Open Neural Network Exchange 13.9k Dec 30, 2022
RefineGNN - Iterative refinement graph neural network for antibody sequence-structure co-design (RefineGNN)

Iterative refinement graph neural network for antibody sequence-structure co-des

Wengong Jin 83 Dec 31, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
PyTorch Implementation of Realtime Multi-Person Pose Estimation project.

PyTorch Realtime Multi-Person Pose Estimation This is a pytorch version of Realtime_Multi-Person_Pose_Estimation, origin code is here Realtime_Multi-P

Dave Fang 157 Nov 12, 2022
A PyTorch implementation of SIN: Superpixel Interpolation Network

SIN: Superpixel Interpolation Network This is is a PyTorch implementation of the superpixel segmentation network introduced in our PRICAI-2021 paper:

6 Sep 28, 2022
modelvshuman is a Python library to benchmark the gap between human and machine vision

modelvshuman is a Python library to benchmark the gap between human and machine vision. Using this library, both PyTorch and TensorFlow models can be evaluated on 17 out-of-distribution datasets with

Bethge Lab 244 Jan 03, 2023