DCGAN LSGAN WGAN-GP DRAGAN PyTorch

Overview

Recommendation

  • Our GAN based work for facial attribute editing - AttGAN.

News

  • 8 April 2019: We re-implement these GANs by Tensorflow 2! The old version is here: v1 or in the "v1" directory.
  • PyTorch Version


GANs - Tensorflow 2

Tensorflow 2 implementations of DCGAN, LSGAN, WGAN-GP and DRAGAN.

Exemplar results

Fashion-MNIST

DCGAN LSGAN WGAN-GP DRAGAN

CelebA

DCGAN LSGAN
WGAN-GP DRAGAN

Anime

WGAN-GP DRAGAN

Usage

  • Environment

    • Python 3.6

    • TensorFlow 2.2, TensorFlow Addons 0.10.0

    • OpenCV, scikit-image, tqdm, oyaml

    • we recommend Anaconda or Miniconda, then you can create the TensorFlow 2.2 environment with commands below

      conda create -n tensorflow-2.2 python=3.6
      
      source activate tensorflow-2.2
      
      conda install scikit-image tqdm tensorflow-gpu=2.2
      
      conda install -c conda-forge oyaml
      
      pip install tensorflow-addons==0.10.0
    • NOTICE: if you create a new conda environment, remember to activate it before any other command

      source activate tensorflow-2.2
  • Datasets

  • Examples of training

    • Fashion-MNIST DCGAN

      CUDA_VISIBLE_DEVICES=0 python train.py --dataset=fashion_mnist --epoch=25 --adversarial_loss_mode=gan
    • CelebA DRAGAN

      CUDA_VISIBLE_DEVICES=0 python train.py --dataset=celeba --epoch=25 --adversarial_loss_mode=gan --gradient_penalty_mode=dragan
    • Anime WGAN-GP

      CUDA_VISIBLE_DEVICES=0 python train.py --dataset=anime --epoch=200 --adversarial_loss_mode=wgan --gradient_penalty_mode=wgan-gp --n_d=5
    • see more training exampls in commands.sh

    • tensorboard for loss visualization

      tensorboard --logdir ./output/fashion_mnist_gan/summaries --port 6006
Comments
  • GPU is full

    GPU is full

    Hello, when the code runs, the memory is full. What happened? My python version is 3.6, tensorflow version is 1.11, my GPU is 1080ti, thanks! the error is as follow: An error ocurred while starting the kernel 2019󈚥󈚦 08:40:45.229298: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 2019󈚥󈚦 08:40:45.601632: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1411] Found device 0 with properties: name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.582 pciBusID: 0000:65:00.0 totalMemory: 11.00GiB freeMemory: 9.10GiB 2019󈚥󈚦 08:40:45.603929: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1490] Adding visible gpu devices: 0 2019󈚥󈚦 08:40:46.556261: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971] Device interconnect StreamExecutor with strength 1 edge matrix: 2019󈚥󈚦 08:40:46.558110: I tensorflow/core/common_runtime/gpu/gpu_device.cc:977] 0 2019󈚥󈚦 08:40:46.558407: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990] 0: N 2019󈚥󈚦 08:40:46.558836: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1103] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 8789 MB memory) ‑> physical GPU (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:65:00.0, compute capability: 6.1)

    opened by lixingbao 9
  • About problem with generating image size

    About problem with generating image size

    Hello,can your code only generate 64×64 images? Can I generate an image of the specified size? For example: 256 × 256, if you can, what parameters need to be modified?thank you!

    opened by lixingbao 6
  • WGAN-GP does not work!!!

    WGAN-GP does not work!!!

    I have updated the code from TensorFlow 2.0-alpha to TensorFlow 2.0, everything works well except for WGAN-GP (it works in tf2.0-alpha). In tf2.0, The gradient penalty seems very unstable, but I cannot find out the problem. Does anybody help? I will be grateful.

    help wanted 
    opened by LynnHo 3
  • how about 3D data?

    how about 3D data?

    Hi!

    cartoon faces original size is [96, 96, 3],the number 3 means 3 channel RGB data. But if I have grayscale data with 3 slices, i.e the size is [121,145,3], Can I simply use this code? If not, what should I change based on this code?

    Thanks for your work! Look forward to your response.

    opened by KakaVlasic 3
  • c_iter isn't used

    c_iter isn't used

    c_iter is defined but not used in all of the WGAN files. What is the correct behaviour? i.e should the critic be optimised heavily initially or not?

    Also, can you confirm that you use a learning rate parameter of 0.0002, regardless of whether RMSProp or Adam is used as the optimiser?

    opened by davidADSP 3
  • About n_critic = 5

    About n_critic = 5

    i use the code whitch be used to train cartoon pictures with WGAN-GP. i don't know what the mean of n_critic = 5 , and why do you to set it. thanks.

    opened by tuoniaoren 3
  • Error while using celeba dataset

    Error while using celeba dataset

    I am getting this error while running train.py TypeError: Input 'filename' of 'ReadFile' Op has type float32 that does not match expected type of string. Please help with this. Thanks in advance

    opened by yksolanki9 2
  • Where do you freeze the gradient descent?

    Where do you freeze the gradient descent?

    Hello, I am confused about how do you freeze the gradient descent to the other model. When training d_step, I suppose the generator should be freezed, as f_logit is based on generator and used in d_loss; similarly, when training g_step, I suppose the discriminator should be freezed, as f_logit depens on discriminator.

    However, I do not see where you stop those gradients flowing to the unwanted part, either generator or discriminator. Would you please provide some hints for me? Thank you.

    opened by ybsave 2
  • do you try to use Resnet in wgan-gp?

    do you try to use Resnet in wgan-gp?

    Have you compared the difference between the network structure of DCGAN and the structure of Resnet in WGAN-GP?Is the effect of Resnet will be better than the structure of DCGAN.

    opened by tuoniaoren 2
  • running question

    running question

    do you meet the program stop without mistakes when the code running for some time ,and the GPU stops work.I changed the value of num_threads。(from 16 to 10)。i run it again.i don't know Is it because the value is too high。

    opened by tuoniaoren 2
  • License

    License

    Hi Zhenliang He, I wonder whether you would be willing to please license this code under an open source license? If so please add a license, or if not please just close this request. Thanks, Connelly

    opened by connellybarnes 2
  • A problem for your DCGAN architecture

    A problem for your DCGAN architecture

    Hi, - Your work is really interesting. But I have found there is a problem for your DCGAN that I didn't understand. You generate noise twice when train discriminator and generator for each iteration, like the blue lines in the following picture. In soumith code (includes some official DCGAN code), he only generate noise once: https://github.com/soumith/dcgan.torch. Could you please tell me the reason?

    image

    opened by RayGuo-C 1
  • NameError: name 'shape' is not defined

    NameError: name 'shape' is not defined

    Traceback (most recent call last): File "D:/github/DCGAN-LSGAN-WGAN-GP-DRAGAN-Tensorflow-2-master/DCGAN-LSGAN-WGAN-GP-DRAGAN-Tensorflow-2-master/train.py", line 91, in G = module.ConvGenerator(input_shape=(1, 1, args.z_dim), output_channels=shape[-1], n_upsamplings=n_G_upsamplings, name='G_%s' % args.dataset) NameError: name 'shape' is not defined please tell me why

    opened by Tonyztj 0
Releases(v1)
Owner
Zhenliang He
Zhenliang He
Add gui for YoloV5 using PyQt5

HEAD 更新2021.08.16 **添加图片和视频保存功能: 1.图片和视频按照当前系统时间进行命名 2.各自检测结果存放入output文件夹 3.摄像头检测的默认设备序号更改为0,减少调试报错 温馨提示: 1.项目放置在全英文路径下,防止项目报错 2.默认使用cpu进行检测,自

Ruihao Wang 65 Dec 27, 2022
EEGEyeNet is benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty

Introduction EEGEyeNet EEGEyeNet is a benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty. Overview T

Ard Kastrati 23 Dec 22, 2022
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

117 Dec 28, 2022
A graph adversarial learning toolbox based on PyTorch and DGL.

GraphWar: Arms Race in Graph Adversarial Learning NOTE: GraphWar is still in the early stages and the API will likely continue to change. 🚀 Installat

Jintang Li 54 Jan 05, 2023
[PNAS2021] The neural architecture of language: Integrative modeling converges on predictive processing

The neural architecture of language: Integrative modeling converges on predictive processing Code accompanying the paper The neural architecture of la

Martin Schrimpf 36 Dec 01, 2022
The CLRS Algorithmic Reasoning Benchmark

Learning representations of algorithms is an emerging area of machine learning, seeking to bridge concepts from neural networks with classical algorithms.

DeepMind 251 Jan 05, 2023
Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm

DeCLIP Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm. Our paper is available in arxiv Updates ** Ou

Sense-GVT 470 Dec 30, 2022
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

zshicode 1 Nov 18, 2021
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 125 Dec 31, 2022
TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)

SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap

73 Nov 06, 2022
Keras Model Implementation Walkthrough

Keras Model Implementation Walkthrough

Luke Wood 17 Sep 27, 2022
Exploring Image Deblurring via Blur Kernel Space (CVPR'21)

Exploring Image Deblurring via Encoded Blur Kernel Space About the project We introduce a method to encode the blur operators of an arbitrary dataset

VinAI Research 118 Dec 19, 2022
A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions

A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions Kapoutsis, A.C., Chatzichristofis,

Athanasios Ch. Kapoutsis 5 Oct 15, 2022
Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation

FCN_MSCOCO_Food_Segmentation Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation Input data: [http://mscoco.org/dataset/#ove

Alexander Kalinovsky 11 Jan 08, 2019
performing moving objects segmentation using image processing techniques with opencv and numpy

Moving Objects Segmentation On this project I tried to perform moving objects segmentation using background subtraction technique. the introduced meth

Mohamed Magdy 15 Dec 12, 2022
Physical Anomalous Trajectory or Motion (PHANTOM) Dataset

Physical Anomalous Trajectory or Motion (PHANTOM) Dataset Description This dataset contains the six different classes as described in our paper[]. The

0 Dec 16, 2021
MiniSom is a minimalistic implementation of the Self Organizing Maps

MiniSom Self Organizing Maps MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial N

Giuseppe Vettigli 1.2k Jan 03, 2023
Face Mask Detector by live camera using tensorflow-keras, openCV and Python

Face Mask Detector 😷 by Live Camera Detecting masked or unmasked faces by live camera with percentange of mask occupation About Project: This an Arti

Karan Shingde 2 Apr 04, 2022
Real-time Joint Semantic Reasoning for Autonomous Driving

MultiNet MultiNet is able to jointly perform road segmentation, car detection and street classification. The model achieves real-time speed and state-

Marvin Teichmann 518 Dec 12, 2022