EigenGAN Tensorflow, EigenGAN: Layer-Wise Eigen-Learning for GANs

Overview
Gender Bangs Body Side Pose (Yaw)
Lighting Smile Face Shape Lipstick Color
Painting Style Pose (Yaw) Pose (Pitch) Zoom & Rotate
Flush & Eye Color Mouth Shape Hair Color Hue (Orange-Blue)

More Unsupervisedly Learned Dimensions


EigenGAN

TensorFlow implementation of EigenGAN: Layer-Wise Eigen-Learning for GANs      

Usage

  • Environment

    • Python 3.6

    • TensorFlow 1.15

    • OpenCV, scikit-image, tqdm, oyaml

    • we recommend Anaconda or Miniconda, then you can create the environment with commands below

      conda create -n EigenGAN python=3.6
      
      source activate EigenGAN
      
      conda install opencv scikit-image tqdm tensorflow-gpu=1.15
      
      conda install -c conda-forge oyaml
    • NOTICE: if you create a new conda environment, remember to activate it before any other command

      source activate EigenGAN
  • Data Preparation

    • CelebA-unaligned (10.2GB, higher quality than the aligned data)

      • download the dataset

      • unzip and process the data

        7z x ./data/img_celeba/img_celeba.7z/img_celeba.7z.001 -o./data/img_celeba/
        
        unzip ./data/img_celeba/annotations.zip -d ./data/img_celeba/
        
        python ./scripts/align.py
    • Anime

      • download the dataset

        mkdir -p ./data/anime
        
        rsync --verbose --recursive rsync://78.46.86.149:873/biggan/portraits/ ./data/anime/original_imgs
      • process the data

        python ./scripts/remove_black_edge.py
  • Run (support multi-GPU)

    • training on CelebA

      CUDA_VISIBLE_DEVICES=0,1 \
      python train.py \
      --img_dir ./data/img_celeba/aligned/align_size(572,572)_move(0.250,0.000)_face_factor(0.450)_jpg/data \
      --experiment_name CelebA
    • training on Anime

      CUDA_VISIBLE_DEVICES=0,1 \
      python train.py \
      --img_dir ./data/anime/remove_black_edge_imgs \
      --experiment_name Anime
    • testing

      CUDA_VISIBLE_DEVICES=0 \
      python test_traversal_all_dims.py \
      --experiment_name CelebA
    • loss visualization

      CUDA_VISIBLE_DEVICES='' \
      tensorboard \
      --logdir ./output/CelebA/summaries \
      --port 6006
  • Using Trained Weights

    • trained weights (move to ./output/*.zip)

    • unzip the file (CelebA.zip for example)

      unzip ./output/CelebA.zip -d ./output/
    • testing (see above)

Citation

If you find EigenGAN useful in your research works, please consider citing:

@article{he2021eigengan,
  title={EigenGAN: Layer-Wise Eigen-Learning for GANs},
  author={He, Zhenliang and Kan, Meina and Shan, Shiguang},
  journal={arXiv:2104.12476},
  year={2021}
}
Owner
Zhenliang He
Zhenliang He
[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral)

PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision Kehong Gong*, Bingbing Li*, Jianfeng Zhang*, Ta

256 Dec 28, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021) PyTorch implementation of the paper: CoFiNet: Reli

76 Jan 03, 2023
This is the latest version of the PULP SDK

PULP-SDK This is the latest version of the PULP SDK, which is under active development. The previous (now legacy) version, which is no longer supporte

78 Dec 07, 2022
From Perceptron model to Deep Neural Network from scratch in Python.

Neural-Network-Basics Aim of this Repository: From Perceptron model to Deep Neural Network (from scratch) in Python. ** Currently working on a basic N

Aditya Kahol 1 Jan 14, 2022
Using pytorch to implement unet network for liver image segmentation.

Using pytorch to implement unet network for liver image segmentation.

zxq 1 Dec 17, 2021
3D-printable hand-strapped keyboard

Note: This repo has not been cleaned up and prepared for general consumption at all. This is just a dump of the project files. If there is any interes

Wojciech Baranowski 41 Dec 31, 2022
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)

Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi

Zinan Lin 32 Dec 16, 2022
Code for Active Learning at The ImageNet Scale.

Code for Active Learning at The ImageNet Scale. This repository implements many popular active learning algorithms and allows training with torch's DDP.

Zeyad Emam 47 Dec 12, 2022
Dilated Convolution for Semantic Image Segmentation

Multi-Scale Context Aggregation by Dilated Convolutions Introduction Properties of dilated convolution are discussed in our ICLR 2016 conference paper

Fisher Yu 764 Dec 26, 2022
Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021)

L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021) 🙈 A more detailed readme is co

Lincedo Lab 4 Jun 09, 2021
This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Models used for prediction Diabetes and further the basic theory and working of Gold nanoparticles.

GoldNanoparticles This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Mode

1 Jan 30, 2022
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Qianli Ma 158 Nov 24, 2022
Active learning for Mask R-CNN in Detectron2

MaskAL - Active learning for Mask R-CNN in Detectron2 Summary MaskAL is an active learning framework that automatically selects the most-informative i

49 Dec 20, 2022
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022
A coin flip game in which you can put the amount of money below or equal to 1000 and then choose heads or tail

COIN_FLIPPY ##This is a simple example package. You can use Github-flavored Markdown to write your content. Coinflippy A coin flip game in which you c

2 Dec 26, 2021
2D&3D human pose estimation

Human Pose Estimation Papers [CVPR 2016] - 201511 [IJCAI 2016] - 201602 Other Action Recognition with Joints-Pooled 3D Deep Convolutional Descriptors

133 Jan 02, 2023
Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks

Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks This is the official code for DyReg model inroduced in Discovering Dyna

Bitdefender Machine Learning 11 Nov 08, 2022
nn_builder lets you build neural networks with less boilerplate code

nn_builder lets you build neural networks with less boilerplate code. You specify the type of network you want and it builds it. Install pip install n

Petros Christodoulou 157 Nov 20, 2022
A Comparative Framework for Multimodal Recommender Systems

Cornac Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxilia

Preferred.AI 671 Jan 03, 2023
Multimodal Temporal Context Network (MTCN)

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022