TDN: Temporal Difference Networks for Efficient Action Recognition

Overview

TDN: Temporal Difference Networks for Efficient Action Recognition

1

Overview

We release the PyTorch code of the TDN(Temporal Difference Networks). This code is based on the TSN and TSM codebase. The core code to implement the Temporal Difference Module are ops/base_module.py and ops/tdn_net.py.

🔥 [NEW!] We have released the PyTorch code of TDN.

Prerequisites

The code is built with following libraries:

Data Preparation

We have successfully trained TDN on Kinetics400, UCF101, HMDB51, Something-Something-V1 and V2 with this codebase.

  • The processing of Something-Something-V1 & V2 can be summarized into 3 steps:

    1. Extract frames from videos(you can use ffmpeg to get frames from video)
    2. Generate annotations needed for dataloader (" " in annotations) The annotation usually includes train.txt and val.txt. The format of *.txt file is like:
      frames/video_1 num_frames label_1
      frames/video_2 num_frames label_2
      frames/video_3 num_frames label_3
      ...
      frames/video_N num_frames label_N
      
    3. Add the information to ops/dataset_configs.py
  • The processing of Kinetics400 can be summarized into 2 steps:

    1. Generate annotations needed for dataloader (" " in annotations) The annotation usually includes train.txt and val.txt. The format of *.txt file is like:
      frames/video_1.mp4  label_1
      frames/video_2.mp4  label_2
      frames/video_3.mp4  label_3
      ...
      frames/video_N.mp4  label_N
      
    2. Add the information to ops/dataset_configs.py

Model Zoo

Here we provide some off-the-shelf pretrained models. The accuracy might vary a little bit compared to the paper, since the raw video of Kinetics downloaded by users may have some differences.

Something-Something-V1

Model Frames x Crops x Clips Top-1 Top-5 checkpoint
TDN-ResNet50 8x1x1 52.3% 80.6% link
TDN-ResNet50 16x1x1 53.9% 82.1% link

Something-Something-V2

Model Frames x Crops x Clips Top-1 Top-5 checkpoint
TDN-ResNet50 8x1x1 64.0% 88.8% link
TDN-ResNet50 16x1x1 65.3% 89.7% link

Kinetics400

Model Frames x Crops x Clips Top-1 (30 view) Top-5 (30 view) checkpoint
TDN-ResNet50 8x3x10 76.6% 92.8% link
TDN-ResNet50 16x3x10 77.5% 93.2% link
TDN-ResNet101 8x3x10 77.5% 93.6% link
TDN-ResNet101 16x3x10 78.5% 93.9% link

Testing

  • For center crop single clip, the processing of testing can be summarized into 2 steps:
    1. Run the following testing scripts:
      CUDA_VISIBLE_DEVICES=0 python3 test_models_center_crop.py something \
      --archs='resnet50' --weights   --test_segments=8  \
      --test_crops=1 --batch_size=16  --gpus 0 --output_dir  -j 4 --clip_index=1
      
    2. Run the following scripts to get result from the raw score:
      python3 pkl_to_results.py --num_clips 1 --test_crops 1 --output_dir   
      
  • For 3 crops, 10 clips, the processing of testing can be summarized into 2 steps:
    1. Run the following testing scripts for 10 times(clip_index from 0 to 9):
      CUDA_VISIBLE_DEVICES=0 python3 test_models_three_crops.py  kinetics \
      --archs='resnet50' --weights   --test_segments=8 \
      --test_crops=3 --batch_size=16 --full_res --gpus 0 --output_dir   \
      -j 4 --clip_index 
      
    2. Run the following scripts to ensemble the raw score of the 30 views:
      python pkl_to_results.py --num_clips 10 --test_crops 3 --output_dir  
      

Training

This implementation supports multi-gpu, DistributedDataParallel training, which is faster and simpler.

  • For example, to train TDN-ResNet50 on Something-Something-V1 with 8 gpus, you can run:
    python -m torch.distributed.launch --master_port 12347 --nproc_per_node=8 \
                main.py  something  RGB --arch resnet50 --num_segments 8 --gd 20 --lr 0.02 \
                --lr_scheduler step --lr_steps  30 45 55 --epochs 60 --batch-size 16 \
                --wd 5e-4 --dropout 0.5 --consensus_type=avg --eval-freq=1 -j 4 --npb 
    
  • For example, to train TDN-ResNet50 on Kinetics400 with 8 gpus, you can run:
    python -m torch.distributed.launch --master_port 12347 --nproc_per_node=8 \
            main.py  kinetics RGB --arch resnet50 --num_segments 8 --gd 20 --lr 0.02 \
            --lr_scheduler step  --lr_steps 50 75 90 --epochs 100 --batch-size 16 \
            --wd 1e-4 --dropout 0.5 --consensus_type=avg --eval-freq=1 -j 4 --npb 
    

Acknowledgements

We especially thank the contributors of the TSN and TSM codebase for providing helpful code.

License

This repository is released under the Apache-2.0. license as found in the LICENSE file.

Citation

If you think our work is useful, please feel free to cite our paper 😆 :

@article{wang2020tdn,
      title={TDN: Temporal Difference Networks for Efficient Action Recognition}, 
      author={Limin Wang and Zhan Tong and Bin Ji and Gangshan Wu},
      journal={arXiv preprint arXiv:2012.10071},
      year={2020}
}
Owner
Multimedia Computing Group, Nanjing University
Multimedia Computing Group, Nanjing University
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
An All-MLP solution for Vision, from Google AI

MLP Mixer - Pytorch An All-MLP solution for Vision, from Google AI, in Pytorch. No convolutions nor attention needed! Yannic Kilcher video Install $ p

Phil Wang 784 Jan 06, 2023
An off-line judger supporting distributed problem repositories

Thaw 中文 | English Thaw is an off-line judger supporting distributed problem repositories. Everyone can use Thaw release problems with license on GitHu

countercurrent_time 2 Jan 09, 2022
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

Denis Emelin 42 Nov 24, 2022
Predicting Student Attentiveness using OpenCV

Predicting-Student-Attentiveness-using-OpenCV The model will predict if a student is attentive or not through facial parameter received through the st

Johann Pinto 2 Aug 20, 2022
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 799 Dec 28, 2022
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing Environment Tested on Ubuntu 14.04 64bit and 16.04 64bit Installation # disabl

gts3.org (<a href=[email protected])"> 581 Dec 30, 2022
ML for NLP and Computer Vision.

Sparrow is our open-source ML product. It runs on Skipper MLOps infrastructure.

Katana ML 2 Nov 28, 2021
STEAL - Learning Semantic Boundaries from Noisy Annotations (CVPR 2019)

STEAL This is the official inference code for: Devil Is in the Edges: Learning Semantic Boundaries from Noisy Annotations David Acuna, Amlan Kar, Sanj

469 Dec 26, 2022
Code for EMNLP2021 paper "Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training"

VoCapXLM Code for EMNLP2021 paper Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training Environment DockerFile: dancingso

Bo Zheng 15 Jul 28, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
Header-only library for using Keras models in C++.

frugally-deep Use Keras models in C++ with ease Table of contents Introduction Usage Performance Requirements and Installation FAQ Introduction Would

Tobias Hermann 927 Jan 05, 2023
Campsite Reservation Finder

yellowstone-camping UPDATE: yellowstone-camping is being expanded and renamed to camply. The updated tool now interfaces with the Recreation.gov API a

Justin Flannery 233 Jan 08, 2023
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
YOLOv5 Series Multi-backbone, Pruning and quantization Compression Tool Box.

YOLOv5-Compression Update News Requirements 环境安装 pip install -r requirements.txt Evaluation metric Visdrone Model mAP ZhangYuan 719 Jan 02, 2023

Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

Jhacson Meza 47 Nov 18, 2022
Deep Learning for Time Series Forecasting.

nixtlats:Deep Learning for Time Series Forecasting [nikstla] (noun, nahuatl) Period of time. State-of-the-art time series forecasting for pytorch. Nix

Nixtla 5 Dec 06, 2022
STBP is a way to train SNN with datasets by Backward propagation.

Spiking neural network (SNN), compared with depth neural network (DNN), has faster processing speed, lower energy consumption and more biological interpretability, which is expected to approach Stron

Ling Zhang 18 Dec 09, 2022
VGG16 model-based classification project about brain tumor detection.

Brain-Tumor-Classification-with-MRI VGG16 model-based classification project about brain tumor detection. First, you can check what people are doing o

Atakan ErdoÄŸan 2 Mar 21, 2022
Code base for "On-the-Fly Test-time Adaptation for Medical Image Segmentation"

On-the-Fly Adaptation Official Pytorch Code base for On-the-Fly Test-time Adaptation for Medical Image Segmentation Paper Introduction One major probl

Jeya Maria Jose 17 Nov 10, 2022