PyTorch implementation of our paper How robust are discriminatively trained zero-shot learning models?

Overview

How robust are discriminatively trained zero-shot learning models?

This repository contains the PyTorch implementation of our paper How robust are discriminatively trained zero-shot learning models? published at Elsevier Image and Vision Computing.

Paper Highlights

In this paper, as a continuation of our previous work, we focus on the corruption robustness of discriminative ZSL models. Highlights of our paper is as follows.

  1. In order to facilitate the corruption robustness analyses, we curate and release the first benchmark datasets CUB-C, SUN-C and AWA2-C.
  2. We show that, compared to fully supervised settings, class imbalance and model strength are severe issues effecting the robustness behaviour of ZSL models.
  3. Combined with our previous work, we define and show the pseudo robustness effect, where absolute metrics may not always reflect the robustness behaviour of a model. This effect is present for adversarial examples, but not for corruptions.
  4. We show that recent augmentation methods designed for better corruption robustness can also increase the clean accuracy of ZSL models, and set new strong baselines.
  5. We show in detail that unseen and seen classes are affected disproportionately. We also show zero-shot and generalized zero-shot performances are affected differently.

Dataset Highlights

We release CUB-C, SUN-C and AWA2-C, which are corrupted versions of three popular ZSL benchmarks. Based on the previous work, we introduce several corruptions in various severities to test the generalization ability of ZSL models. More details on the design process and corruptions can be found in the paper.

Repository Contents and Requirements

This repository contains the code to reproduce our results and the necessary scripts to generate the corruption datasets. You should follow the below steps before running the code.

  • You can use the provided environment yml (or pip requirements.txt) file to install dependencies.
  • Download the pretrained models here and place them under /model folders.
  • Download AWA2, SUN and CUB datasets. Please note we operate on raw images, not the features provided with the datasets.
  • Download the data split/attribute files here and extract the contents into /data folder.
  • Change the necessary paths in the json file.

The code in this repository lets you evaluate our provided models with AWA2, CUB-C and SUN-C. If you want to use corruption datasets, you can take generate_corruption.py file and use it in your own project.

Additional Content

In addition to the paper, we release our supplementary file supp.pdf. It includes the following.

1. Average errors (ZSL and GZSL) for each dataset per corruption category. These are for the ALE model, and should be used to weight the errors when calculating mean corruption errors. For comparison, this essentially replaces AlexNet error weighting used for ImageNet-C dataset.

2. Mean corruption errors (ZSL and GZSL) of the ALE model, for seen/unseen/harmonic and ZSL top-1 accuracies, on each dataset. These results include the MCE values for original ALE and ALE with five defense methods used in our paper (i.e. total-variance minimization, spatial smoothing, label smoothing, AugMix and ANT). These values can be used as baseline scores when comparing the robustness of your method.

Running the code

After you've downloaded the necessary dataset files, you can run the code by simply

python run.py

For changing the experimental parameters, refer to params.json file. Details on json file parameters can be found in the code. By default, running run.py looks for a params.json file in the folder. If you want to run the code with another json file, use

python run.py --json_path path_to_json

Citation

If you find our code or paper useful in your research, please consider citing the following papers.

@inproceedings{yucel2020eccvw,
  title={A Deep Dive into Adversarial Robustness in Zero-Shot Learning},
  author={Yucel, Mehmet Kerim and Cinbis, Ramazan Gokberk and Duygulu, Pinar},
  booktitle = {ECCV Workshop on Adversarial Robustness in the Real World}
  pages={3--21},
  year={2020},
  organization={Springer}
}

@article{yucel2022imavis,
title = {How robust are discriminatively trained zero-shot learning models?},
journal = {Image and Vision Computing},
pages = {104392},
year = {2022},
issn = {0262-8856},
doi = {https://doi.org/10.1016/j.imavis.2022.104392},
url = {https://www.sciencedirect.com/science/article/pii/S026288562200021X},
author = {Mehmet Kerim Yucel and Ramazan Gokberk Cinbis and Pinar Duygulu},
keywords = {Zero-shot learning, Robust generalization, Adversarial robustness},
}

Acknowledgements

This code base has borrowed several implementations from here, here and it is a continuation of our previous work's repository.

Owner
Mehmet Kerim Yucel
Mehmet Kerim Yucel
Tensors and Dynamic neural networks in Python with strong GPU acceleration

PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration Deep neural networks b

61.4k Jan 04, 2023
code associated with ACL 2021 DExperts paper

DExperts Hi! This repository contains code for the paper DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-Experts to appear at

Alisa Liu 68 Dec 15, 2022
Official PyTorch implementation of RobustNet (CVPR 2021 Oral)

RobustNet (CVPR 2021 Oral): Official Project Webpage Codes and pretrained models will be released soon. This repository provides the official PyTorch

Sungha Choi 173 Dec 21, 2022
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

44 Sep 15, 2022
(ICONIP 2020) MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image

MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image This repo contains the source code for MobileHand, real-time estimation of 3D

90 Dec 12, 2022
This repository contains a Ruby API for utilizing TensorFlow.

tensorflow.rb Description This repository contains a Ruby API for utilizing TensorFlow. Linux CPU Linux GPU PIP Mac OS CPU Not Configured Not Configur

somatic labs 825 Dec 26, 2022
Pytorch implementation of Integrating Tree Path in Transformer for Code Representation

This is an official Pytorch implementation of the approaches proposed in: Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, Zhi Jin “Integrating Tree Path in

Han Peng 16 Dec 23, 2022
Simulation environments for the CrazyFlie quadrotor: Used for Reinforcement Learning and Sim-to-Real Transfer

Phoenix-Drone-Simulation An OpenAI Gym environment based on PyBullet for learning to control the CrazyFlie quadrotor: Can be used for Reinforcement Le

Sven Gronauer 8 Dec 07, 2022
[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery

PlaneTR: Structure-Guided Transformers for 3D Plane Recovery This is the official implementation of our ICCV 2021 paper News There maybe some bugs in

73 Nov 30, 2022
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro

Zheng Zhao 21 Nov 14, 2022
PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and Multi-Step Knowledge Distillation

PocketNet This is the official repository of the paper: PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and M

Fadi Boutros 40 Dec 22, 2022
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
Self-Supervised depth kalilia

Self-Supervised depth kalilia

24 Oct 15, 2022
(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.

LAV Learning from All Vehicles Dian Chen, Philipp Krähenbühl CVPR 2022 (also arXiV 2203.11934) This repo contains code for paper Learning from all veh

Dian Chen 300 Dec 15, 2022
My personal code and solution to the Synacor Challenge from 2012 OSCON.

Synacor OSCON Challenge Solution (2012) This repository contains my code and solution to solve the Synacor OSCON 2012 Challenge. If you are interested

2 Mar 20, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

On the Bottleneck of Graph Neural Networks and its Practical Implications This is the official implementation of the paper: On the Bottleneck of Graph

75 Dec 22, 2022
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Chainer 5.8k Jan 06, 2023
ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

ReConsider ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin

Facebook Research 47 Jul 26, 2022
Tutorials and implementations for "Self-normalizing networks"

Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers

Institute of Bioinformatics, Johannes Kepler University Linz 1.6k Jan 07, 2023