Deep Multi-Magnification Network for multi-class tissue segmentation of whole slide images

Related tags

Deep LearningDMMN
Overview

Deep Multi-Magnification Network

This repository provides training and inference codes for Deep Multi-Magnification Network published here. Deep Multi-Magnification Network automatically segments multiple tissue subtypes by a set of patches from multiple magnifications in histopathology whole slide images.

Prerequisites

  • Python 3.6.7
  • Pytorch 1.3.1
  • OpenSlide 1.1.1
  • Albumentations

Training

The main training code is training.py. The trained segmentation model will be saved under runs/ by default.

In addition to config, you may need to update the following variables before running training.py:

  • n_classes: the number of tissue subtype classes + 1
  • train_file and val_file: the list of training and validation patches
    • Slide patches must be stored as /path/slide_tiles/patch_1.jpg, /path/slide_tiles/patch_2.jpg, ... /path/slide_tiles/patch_N.jpg
    • The coresponding label patches must be stored as /path/label_tiles/patch_1.png, /path/label_tiles/patch_2.png, ... /path/label_tiles/patch_N.png
    • train_file and val_file must be formatted as
     /path/,patch_1
     /path/,patch_2
     ...
     /path/,patch_N
    
  • d: the number of pixels of each class in the training set for weighted cross entropy loss function

Note that pixels labeled as class 0 are unannotated and will not contribute to the training.

Inference

The main inference codes are slidereader_coords.py and inference.py. You first need to run slidereader_coords.py to generate patch coordinates to be segmented in input whole slide images. After generating patch coordinates, you may run inference.py to generate segmentation predictions of input whole slide images. The segmentation predictions will be saved under imgs/ by default.

You may need to update the following variables before running slidereader_coords.py:

  • slides_to_read: the list of whole slide images
  • coord_file: an output file listing all patch coordinates

In adition to model_path and out_path, you may need to update the following variables before running inference.py:

  • n_classes: the number of tissue subtype classes + 1
  • test file: the list of patch coordinates generated by slidereader_coords.py
  • data_path: the path where whole slide images are located

Please download the pretrained breast model here.

Note that segmentation predictions will be generated in 4-bit BMP format. The size limit for 4-bit BMP files is 232 pixels.

License

This project is under the CC-BY-NC 4.0 license. See LICENSE for details. (c) MSK

Acknowledgments

Reference

If you find our work useful, please cite our paper:

@article{ho2021,
  title={Deep Multi-Magnification Networks for multi-class breast cancer image segmentation},
  author={Ho, David Joon and Yarlagadda, Dig V.K. and D'Alfonso, Timothy M. and Hanna, Matthew G. and Grabenstetter, Anne and Ntiamoah, Peter and Brogi, Edi and Tan, Lee K. and Fuchs, Thomas J.},
  journal={Computerized Medical Imaging and Graphics},
  year={2021},
  volume={88},
  pages={101866}
}
Owner
Computational Pathology
Computational Pathology
Multi-Output Gaussian Process Toolkit

Multi-Output Gaussian Process Toolkit Paper - API Documentation - Tutorials & Examples The Multi-Output Gaussian Process Toolkit is a Python toolkit f

GAMES 113 Nov 25, 2022
A Python package to create, run, and post-process MODFLOW-based models.

Version 3.3.5 — release candidate Introduction FloPy includes support for MODFLOW 6, MODFLOW-2005, MODFLOW-NWT, MODFLOW-USG, and MODFLOW-2000. Other s

388 Nov 29, 2022
Python implementation of ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images, AAAI2022.

ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images Binh M. Le & Simon S. Woo, "ADD:

2 Oct 24, 2022
PlenOctree Extraction algorithm

PlenOctrees_NeRF-SH This is an implementation of the Paper PlenOctrees for Real-time Rendering of Neural Radiance Fields. Not only the code provides t

49 Nov 05, 2022
CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes

CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes. CHERRY is based on a deep learning model, which consists of a graph convolutional encoder and a link

Kenneth Shang 12 Dec 15, 2022
code and models for "Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation"

Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation This repository contains code and models for the method described in: Golnaz

55 Jun 18, 2022
Code for "Single-view robot pose and joint angle estimation via render & compare", CVPR 2021 (Oral).

Single-view robot pose and joint angle estimation via render & compare Yann Labbé, Justin Carpentier, Mathieu Aubry, Josef Sivic CVPR: Conference on C

Yann Labbé 51 Oct 14, 2022
Testbed of AI Systems Quality Management

qunomon Description A testbed for testing and managing AI system qualities. Demo Sorry. Not deployment public server at alpha version. Requirement Ins

AIST AIRC 15 Nov 27, 2021
HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands Oral Presentation, 3DV 2021 Korrawe Karunratanakul, Adrian Spurr, Zicong

Korrawe Karunratanakul 43 Oct 07, 2022
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
An end-to-end framework for mixed-integer optimization with data-driven learned constraints.

OptiCL OptiCL is an end-to-end framework for mixed-integer optimization (MIO) with data-driven learned constraints. We address a problem setting in wh

Holly Wiberg 57 Dec 26, 2022
Learning-based agent for Google Research Football

TiKick 1.Introduction Learning-based agent for Google Research Football Code accompanying the paper "TiKick: Towards Playing Multi-agent Football Full

Tsinghua AI Research Team for Reinforcement Learning 90 Dec 26, 2022
GAN-based 3D human pose estimation model for 3DV'17 paper

Tensorflow implementation for 3DV 2017 conference paper "Adversarially Parameterized Optimization for 3D Human Pose Estimation". @inproceedings{jack20

Dominic Jack 15 Feb 27, 2021
Build and run Docker containers leveraging NVIDIA GPUs

NVIDIA Container Toolkit Introduction The NVIDIA Container Toolkit allows users to build and run GPU accelerated Docker containers. The toolkit includ

NVIDIA Corporation 15.6k Jan 01, 2023
BERTMap: A BERT-Based Ontology Alignment System

BERTMap: A BERT-based Ontology Alignment System Important Notices The relevant paper was accepted in AAAI-2022. Arxiv version is available at: https:/

KRR 36 Dec 24, 2022
A scikit-learn-compatible module for estimating prediction intervals.

MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals (or prediction sets) using your favourit

588 Jan 04, 2023
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

Project This repo has been populated by an initial template to help get you started. Please make sure to update the content to build a great experienc

Microsoft 674 Dec 26, 2022
Implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

PRP Introduction This is the implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

yuanyao366 39 Dec 29, 2022
Attention-based Transformation from Latent Features to Point Clouds (AAAI 2022)

Attention-based Transformation from Latent Features to Point Clouds This repository contains a PyTorch implementation of the paper: Attention-based Tr

12 Nov 11, 2022
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding ⠀⠀ A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

Benedek Rozemberczki 69 Sep 22, 2022