Repository for tutorials, examples and starter scripts for using the MTU HPC cluster

Overview

MTU-HPC-Starter

Repository for tutorials, examples and starter scripts for using the MTU HPC cluster

Connecting to the MTU HPC cluster

Within the college, access to the cluster is via SSH to the host:

com-gpu-cluster.cit.ie

On Windows the simplest way to get an SSH client is to use PuTTy. This is available on all lab PCs.

Linux machines usually have an SSH client on the terminal.

An account on the MTU HPC cluster is usually requested for you by your lecturer or supervisor.

Setup git

Get the Starter Repository using git:

This repository contains some useful sample code for running and submitting jobs on the MTU HPC cluster. This repo can be cloned into your home directory on the HPC cluster and used as a starting point for some your own work.

Once logged into the cluster, use the command at the root of your home directory:

git clone https://github.com/MTU-HPC/MTU-HPC-Starter.git

This will download some basic scripts for getting started with your own projects on thr MTU HPC. Git pull from this repo sometimes as it will be updated with new examples as needed.


Using Miniconda for Python.

THe MTU HPC cluster has a number of versions of Python, Tensorflow and other libraries needed for ML scripts. However, it is dificult to maintain Python libraries and versions systemwide that suit everyone.

To help with this and provide options for users, we have installed Miniconda systemwide. Miniconda allows users to install multiple Python versions and Python libraries in their own separate "environments". This can be done without needing administrator permissions.

Creating and activating conda environments for running python scripts

To use Miniconda, you should have a ".condarc" file at the root of your Home directory. At a minimum it should have the text listed below.

.condarc:

env_prompt: '({name})'
auto_activate_base: false
channels:
  - conda-forge
  - bioconda
  - defaults

The .condarc file tells Miniconda/conda to:

  • env_prompt --- put the name of your currently active conda environment at the front of your command prompt
  • auto_activate_base --- When you login to your cluster account, it will not automatically put you in the base conda environment.
  • channels --- The web repo/location conda install will install Python and Python packages from. "conda-forge" has many ML/AI/Data Analytics packages available.

To see if you already have the .condarc file, type at the commandline:

ls -la

to get a list of files in your home directory. If .condarc is not there, it can be created using the "nano" text editor:

nano .condarc

and copy and paste the text above into .condarc.

One-time only: Initialise conda in your account

To use conda, it must be "initialised" once before it can be used.

To initialise conda, run the following command:

conda init

You will need to exit your SSH session and reconnect for conda to be ready for use. This does not need to be done again.

Create a conda environement for running code

To create a conda environment type the following at the commandline:

conda create --name my_python3_env python=3.8

This create an environemnt called "my_python3_env" and it will install Python 3.8 into that environment. If you don't specify the version of Python, it will install the latest version it can find.

To see your environmensts type:

conda env list

This will should show you 2 environemts now:

  • the base environment
  • my_python3_env - the one we just created. The name is whatever you wish it to be.

At this stage, we have created an envrionment, but we are not using it yet.

Activating a conda environment

Before anything else, type:

 python --version 

This should show you Python 2.7 or some such old Python. This is because the "system" Python is version 2.7. Running a Python script from the commandline now would need the Python script to be compatible with that old version. We cannot upgrade the system python because the operating system itself relies on old Python scripts.

Activate your new conda environment with:

 conda activate my_python3_env

Now run python --version again. The version is now something like Python 3.8. After activating the conda environemnt, we are now using the version of Python you have installed. We are also using the Python packages that are inside this new environment.

Adding packages to a conda enironment

When you are in a "conda" environemt (i.e. the environemnt is "active") the start of your command propmt should show the name of the environment:

(my_python3_env) [email protected] ~]$

To install something like "matplotlib", use conda to install it:

 conda install matplotlib yaml 

That last command will try to install the 2 packages "matplotlib" and "yaml" into the current active conda environment.

Managing conda environments

If you have 5 programs that use matplotlib and Python 3.8, they can all use the same conda environment. There is no need to create a new environment for every program or script.

If, however, you need to run a library which only works on Python 3.6 or needs very different packages to your main environment, you could create a new conda environment for running those scripts:

conda create --name biology_python_env python=3.6
conda activate biology_python_env
conda install 
   

   

Deactivating conda environment

When you are finished, or you wish to use a different conda environment you can exit from the conda environemnt thus:

conda deactivate
Żmija is a simple universal code generation tool.

Żmija Żmija is a simple universal code generation tool. It is intended to be used as a means to generate code that is both efficient and easily mainta

Adrian Samoticha 2 Nov 23, 2021
A collection and example code of every topic you need to know about in the basics of Python.

The Python Beginners Guide: Master The Python Basics Tonight This guide is a collection of every topic you need to know about in the basics of Python.

Ahmed Baari 1 Dec 19, 2021
An open source utility for creating publication quality LaTex figures generated from OpenFOAM data files.

foamTEX An open source utility for creating publication quality LaTex figures generated from OpenFOAM data files. Explore the docs » Report Bug · Requ

1 Dec 19, 2021
Make posters from Markdown files.

MkPosters Create posters using Markdown. Supports icons, admonitions, and LaTeX mathematics. At the moment it is restricted to the specific layout of

Patrick Kidger 243 Dec 20, 2022
Generate YARA rules for OOXML documents using ZIP local header metadata.

apooxml Generate YARA rules for OOXML documents using ZIP local header metadata. To learn more about this tool and the methodology behind it, check ou

MANDIANT 34 Jan 26, 2022
A python package to import files from an adjacent folder

EasyImports About EasyImports is a python package that allows users to easily access and import files from sister folders: f.ex: - Project - Folde

1 Jun 22, 2022
sphinx builder that outputs markdown files.

sphinx-markdown-builder sphinx builder that outputs markdown files Please ★ this repo if you found it useful ★ ★ ★ If you want frontmatter support ple

Clay Risser 144 Jan 06, 2023
Course Materials for Math 340

UBC Math 340 Materials This repository aims to be the one repository for which you can find everything you about Math 340. Lecture Notes Lecture Notes

2 Nov 25, 2021
This repo provides a package to automatically select a random seed based on ancient Chinese Xuanxue

🤞 Random Luck Deep learning is acturally the alchemy. This repo provides a package to automatically select a random seed based on ancient Chinese Xua

Tong Zhu(朱桐) 33 Jan 03, 2023
A Python library for setting up projects using tabular data.

A Python library for setting up projects using tabular data. It can create project folders, standardize delimiters, and convert files to CSV from either individual files or a directory.

0 Dec 13, 2022
204-python-string-21BCA90 created by GitHub Classroom

204-Python This repository is created for subject "204 Programming Skill" Python Programming. This Repository contain list of programs of python progr

VIDYABHARTI TRUST COLLEGE OF BCA 6 Mar 31, 2022
Feature Store for Machine Learning

Overview Feast is an open source feature store for machine learning. Feast is the fastest path to productionizing analytic data for model training and

Feast 3.8k Dec 30, 2022
the project for the most brutal and effective language learning technique

- "The project for the most brutal and effective language learning technique" (c) Alex Kay The langflow project was created especially for language le

Alexander Kaigorodov 7 Dec 26, 2021
Projeto em Python colaborativo para o Bootcamp de Dados do Itaú em parceria com a Lets Code

🧾 lets-code-todo-list por Henrique V. Domingues e Josué Montalvão Projeto em Python colaborativo para o Bootcamp de Dados do Itaú em parceria com a L

Henrique V. Domingues 1 Jan 11, 2022
A Collection of Cheatsheets, Books, Questions, and Portfolio For DS/ML Interview Prep

Here are the sections: Data Science Cheatsheets Data Science EBooks Data Science Question Bank Data Science Case Studies Data Science Portfolio Data J

James Le 2.5k Jan 02, 2023
A module filled with many useful functions and modules in various subjects.

Usefulpy Check out the Usefulpy site Usefulpy site is not always up to date Download and Import download and install with with pip download usefulpyth

Austin Garcia 1 Dec 28, 2021
Numpy's Sphinx extensions

numpydoc -- Numpy's Sphinx extensions This package provides the numpydoc Sphinx extension for handling docstrings formatted according to the NumPy doc

NumPy 234 Dec 26, 2022
Quick tutorial on orchest.io that shows how to build multiple deep learning models on your data with a single line of code using python

Deep AutoViML Pipeline for orchest.io Quickstart Build Deep Learning models with a single line of code: deep_autoviml Deep AutoViML helps you build te

Ram Seshadri 6 Oct 02, 2022
MonsterManualPlus - An advanced monster manual for Tower of the Sorcerer.

Monster Manual + This is an advanced monster manual for Tower of the Sorcerer mods. Users can get a plenty of extra imformation for decision making wh

Yifan Zhou 1 Jan 01, 2022
OpenAPI Spec validator

OpenAPI Spec validator About OpenAPI Spec Validator is a Python library that validates OpenAPI Specs against the OpenAPI 2.0 (aka Swagger) and OpenAPI

A 241 Jan 05, 2023