Real-Time and Accurate Full-Body Multi-Person Pose Estimation&Tracking System

Overview

News!

  • Aug 2020: v0.4.0 version of AlphaPose is released! Stronger tracking! Include whole body(face,hand,foot) keypoints! Colab now available.
  • Dec 2019: v0.3.0 version of AlphaPose is released! Smaller model, higher accuracy!
  • Apr 2019: MXNet version of AlphaPose is released! It runs at 23 fps on COCO validation set.
  • Feb 2019: CrowdPose is integrated into AlphaPose Now!
  • Dec 2018: General version of PoseFlow is released! 3X Faster and support pose tracking results visualization!
  • Sep 2018: v0.2.0 version of AlphaPose is released! It runs at 20 fps on COCO validation set (4.6 people per image on average) and achieves 71 mAP!

AlphaPose

AlphaPose is an accurate multi-person pose estimator, which is the first open-source system that achieves 70+ mAP (75 mAP) on COCO dataset and 80+ mAP (82.1 mAP) on MPII dataset. To match poses that correspond to the same person across frames, we also provide an efficient online pose tracker called Pose Flow. It is the first open-source online pose tracker that achieves both 60+ mAP (66.5 mAP) and 50+ MOTA (58.3 MOTA) on PoseTrack Challenge dataset.

AlphaPose supports both Linux and Windows!


COCO 17 keypoints

Halpe 26 keypoints + tracking

Halpe 136 keypoints + tracking

Results

Pose Estimation

Results on COCO test-dev 2015:

Method AP @0.5:0.95 AP @0.5 AP @0.75 AP medium AP large
OpenPose (CMU-Pose) 61.8 84.9 67.5 57.1 68.2
Detectron (Mask R-CNN) 67.0 88.0 73.1 62.2 75.6
AlphaPose 73.3 89.2 79.1 69.0 78.6

Results on MPII full test set:

Method Head Shoulder Elbow Wrist Hip Knee Ankle Ave
OpenPose (CMU-Pose) 91.2 87.6 77.7 66.8 75.4 68.9 61.7 75.6
Newell & Deng 92.1 89.3 78.9 69.8 76.2 71.6 64.7 77.5
AlphaPose 91.3 90.5 84.0 76.4 80.3 79.9 72.4 82.1

More results and models are available in the docs/MODEL_ZOO.md.

Pose Tracking

Please read trackers/README.md for details.

CrowdPose

Please read docs/CrowdPose.md for details.

Installation

Please check out docs/INSTALL.md

Model Zoo

Please check out docs/MODEL_ZOO.md

Quick Start

  • Colab: We provide a colab example for your quick start.

  • Inference: Inference demo

./scripts/inference.sh ${CONFIG} ${CHECKPOINT} ${VIDEO_NAME} # ${OUTPUT_DIR}, optional

For high level API, please refer to ./scripts/demo_api.py

  • Training: Train from scratch
./scripts/train.sh ${CONFIG} ${EXP_ID}
  • Validation: Validate your model on MSCOCO val2017
./scripts/validate.sh ${CONFIG} ${CHECKPOINT}

Examples:

Demo using FastPose model.

./scripts/inference.sh configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml pretrained_models/fast_res50_256x192.pth ${VIDEO_NAME}
#or
python scripts/demo_inference.py --cfg configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml --checkpoint pretrained_models/fast_res50_256x192.pth --indir examples/demo/

Train FastPose on mscoco dataset.

./scripts/train.sh ./configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml exp_fastpose

More detailed inference options and examples, please refer to GETTING_STARTED.md

Common issue & FAQ

Check out faq.md for faq. If it can not solve your problems or if you find any bugs, don't hesitate to comment on GitHub or make a pull request!

Contributors

AlphaPose is based on RMPE(ICCV'17), authored by Hao-Shu Fang, Shuqin Xie, Yu-Wing Tai and Cewu Lu, Cewu Lu is the corresponding author. Currently, it is maintained by Jiefeng Li*, Hao-shu Fang*, Yuliang Xiu and Chao Xu.

The main contributors are listed in doc/contributors.md.

TODO

  • Multi-GPU/CPU inference
  • 3D pose
  • add tracking flag
  • PyTorch C++ version
  • Add MPII and AIC data
  • dense support
  • small box easy filter
  • Crowdpose support
  • Speed up PoseFlow
  • Add stronger/light detectors and the mobile pose
  • High level API

We would really appreciate if you can offer any help and be the contributor of AlphaPose.

Citation

Please cite these papers in your publications if it helps your research:

@inproceedings{fang2017rmpe,
  title={{RMPE}: Regional Multi-person Pose Estimation},
  author={Fang, Hao-Shu and Xie, Shuqin and Tai, Yu-Wing and Lu, Cewu},
  booktitle={ICCV},
  year={2017}
}

@article{li2018crowdpose,
  title={CrowdPose: Efficient Crowded Scenes Pose Estimation and A New Benchmark},
  author={Li, Jiefeng and Wang, Can and Zhu, Hao and Mao, Yihuan and Fang, Hao-Shu and Lu, Cewu},
  journal={arXiv preprint arXiv:1812.00324},
  year={2018}
}

@inproceedings{xiu2018poseflow,
  author = {Xiu, Yuliang and Li, Jiefeng and Wang, Haoyu and Fang, Yinghong and Lu, Cewu},
  title = {{Pose Flow}: Efficient Online Pose Tracking},
  booktitle={BMVC},
  year = {2018}
}

License

AlphaPose is freely available for free non-commercial use, and may be redistributed under these conditions. For commercial queries, please drop an e-mail at mvig.alphapose[at]gmail[dot]com and cc lucewu[[at]sjtu[dot]edu[dot]cn. We will send the detail agreement to you.

Owner
Machine Vision and Intelligence Group @ SJTU
Machine Vision and Intelligence Group @ SJTU
Reverse engineering Rosetta 2 in M1 Mac

Project Champollion About this project Rosetta 2 is an emulation mechanism to run the x86_64 applications on Arm-based Apple Silicon with Ahead-Of-Tim

FFRI Security, Inc. 258 Jan 07, 2023
kullanışlı ve işinizi kolaylaştıracak bir araç

Hey merhaba! işte çok sorulan sorularının cevabı ve sorunlarının çözümü; Soru= İçinde var denilen birçok şeyi göremiyorum bunun sebebi nedir? Cevap= B

Sexettin 16 Dec 17, 2022
Python implementation of Bayesian optimization over permutation spaces.

Bayesian Optimization over Permutation Spaces This repository contains the source code and the resources related to the paper "Bayesian Optimization o

Aryan Deshwal 9 Dec 23, 2022
Unsupervised Learning of Video Representations using LSTMs

Unsupervised Learning of Video Representations using LSTMs Code for paper Unsupervised Learning of Video Representations using LSTMs by Nitish Srivast

Elman Mansimov 341 Dec 20, 2022
mmfewshot is an open source few shot learning toolbox based on PyTorch

OpenMMLab FewShot Learning Toolbox and Benchmark

OpenMMLab 514 Dec 28, 2022
Implementation for Learning to Track with Object Permanence

Learning to Track with Object Permanence A video-based MOT approach capable of tracking through full occlusions: Learning to Track with Object Permane

Toyota Research Institute - Machine Learning 91 Jan 03, 2023
Object detection on multiple datasets with an automatically learned unified label space.

Simple multi-dataset detection An object detector trained on multiple large-scale datasets with a unified label space; Winning solution of E

Xingyi Zhou 407 Dec 30, 2022
Code of paper Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification.

Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification We provide the codes for repr

12 Dec 12, 2022
Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity

Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, surf

Alex Song 17 Dec 19, 2022
Pytorch library for end-to-end transformer models training and serving

Pytorch library for end-to-end transformer models training and serving

Mikhail Grankin 768 Jan 01, 2023
FSL-Mate: A collection of resources for few-shot learning (FSL).

FSL-Mate is a collection of resources for few-shot learning (FSL). In particular, FSL-Mate currently contains FewShotPapers: a paper list which tracks

Yaqing Wang 1.5k Jan 08, 2023
Model search is a framework that implements AutoML algorithms for model architecture search at scale

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model a

Google 3.2k Dec 31, 2022
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021 [Projec

Zhengqi Li 583 Dec 30, 2022
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
Code repo for "Transformer on a Diet" paper

Transformer on a Diet Reference: C Wang, Z Ye, A Zhang, Z Zhang, A Smola. "Transformer on a Diet". arXiv preprint arXiv (2020). Installation pip insta

cgraywang 31 Sep 26, 2021
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US simulation

AutomaticUSnavigation Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US

Cesare Magnetti 6 Dec 05, 2022
The code of "Dependency Learning for Legal Judgment Prediction with a Unified Text-to-Text Transformer".

Code data_preprocess.py: preprocess data for Dependent-T5. parameters.py: define parameters of Dependent-T5. train_tools.py: traning and evaluation co

1 Apr 21, 2022
Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021)

EMI-FGSM This repository contains code to reproduce results from the paper: Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021) Xiaosen Wa

John Hopcroft Lab at HUST 10 Sep 26, 2022
Code base for the paper "Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation"

This repository contains code for the paper Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiati

8 Aug 28, 2022