TCube generates rich and fluent narratives that describes the characteristics, trends, and anomalies of any time-series data (domain-agnostic) using the transfer learning capabilities of PLMs.

Overview

TCube: Domain-Agnostic Neural Time series Narration

This repository contains the code for the paper: "TCube: Domain-Agnostic Neural Time series Narration" (to appear in IEEE ICDM 2021).

Alt text

Alt text

The PLMs used in this effort (T5, BART, and GPT-2) are implemented using the HuggingFace library (https://huggingface.co/) and finetuned to the WebNLG v3 (https://gitlab.com/shimorina/webnlg-dataset/-/tree/master/release_v3.0) and DART (https://arxiv.org/abs/2007.02871) datasets.

Clones of both datasets are available under /Finetune PLMs/Datasets in this repository.

The PLMs fine-tuned to WebNLG/DART could not be uploaded due to the 1GB limitations of GitLFS. However, pre-made scripts in this repository (detailed below) are present for convientiently fine-tuning these models.

The entire repository is based on Python 3.6 and the results are visaulized through the iPython Notebooks.

Dependencies

Interactive Environments

  • notebook
  • ipywidgets==7.5.1

Deep Learning Frameworks

  • torch 1.7.1 (suited to your CUDA version)
  • pytorch-lightning 0.9.0
  • transformers==3.1.0

NLP Toolkits

  • sentencepiece==0.1.91
  • nltk

Scientific Computing, Data Manipulation, and Visualizations

  • numpy
  • scipy
  • sklearn
  • matplotib
  • pandas
  • pwlf

Evaluation

  • rouge-score
  • textstat
  • lexical_diversity
  • language-tool-python

Misc

  • xlrd
  • tqdm
  • cython

Please make sure that the aforementioned Python packages with their specified versions are installed in your system in a separate virtual environment.

Data-Preprocessing Scripts

Under /Finetune PLMs in this repository there are two scripts for pre-processing the WebNLG and DART datasets:

preprocess_webnlg.py
preprocess_dart.py

These scripts draw from the original datasets in /Finetune PLMs/Datasets/WebNLGv3 and /Finetune PLMs/Datasets/DART and prepare CSV files in /Finetune PLMs/Datasets breaking the original datasets into train, dev, and test sets in the format required by our PLMs.

Fine-tuning Scripts

Under /Finetune PLMs in this repository there are three scripts for fine-tuning T5, BART, and GPT-2:

finetuneT5.py
finetuneBART.py
finetuneGPT2.py

Visualization and Evaluation Notebooks

In the root directory are 10 notebooks. For the descriptions of the time-series datasets used:

Datatsets.ipynb

For comparisons of segmentation and regime-change detection algorithms:

Error Determination.ipynb
Regime Detection.ipynb
Segmentation.ipynb
Trend Detection Plot.ipynb

For the evaluation of the TCube framework on respective time-series datasets:

T3-COVID.ipnyb
T3-DOTS.ipnyb
T3-Pollution.ipnyb
T3-Population.ipnyb
T3-Temperature.ipnyb

Citation and Contact

If any part of this code repository or the TCube framework is used in your work, please cite our paper. Thanks!

Contact: Mandar Sharma ([email protected]), First Author.

Owner
Mandar Sharma
CS PhD @VirginiaTech.
Mandar Sharma
Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)

Learning to Adapt Structured Output Space for Semantic Segmentation Pytorch implementation of our method for adapting semantic segmentation from the s

Yi-Hsuan Tsai 782 Dec 30, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

selfcontact This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] It includes the main function

Lea Müller 68 Dec 06, 2022
Complete U-net Implementation with keras

U Net Lowered with Keras Complete U-net Implementation with keras Original Paper Link : https://arxiv.org/abs/1505.04597 Special Implementations : The

Sagnik Roy 14 Oct 10, 2022
Code and description for my BSc Project, September 2021

BSc-Project Disclaimer: This repo consists of only the additional python scripts necessary to run the agent. To run the project on your own personal d

Matin Tavakoli 20 Jul 19, 2022
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more

Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame

1.4k Jan 07, 2023
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Daochen Zha 48 Nov 21, 2022
TrTr: Visual Tracking with Transformer

TrTr: Visual Tracking with Transformer We propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder a

趙 漠居(Zhao, Moju) 66 Dec 27, 2022
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

110 Dec 29, 2022
CVPR2020 Counterfactual Samples Synthesizing for Robust VQA

CVPR2020 Counterfactual Samples Synthesizing for Robust VQA This repo contains code for our paper "Counterfactual Samples Synthesizing for Robust Visu

72 Dec 22, 2022
LineBoard - Python+React+MySQL-白板即時系統改善人群行為

LineBoard-白板即時系統改善人群行為 即時顯示實驗室的使用狀況,並遠端預約排隊,以此來改善人們的工作效率 程式架構 運作流程 使用者先至該實驗室網站預約

Bo-Jyun Huang 1 Feb 22, 2022
Sharpness-Aware Minimization for Efficiently Improving Generalization

Sharpness-Aware-Minimization-TensorFlow This repository provides a minimal implementation of sharpness-aware minimization (SAM) (Sharpness-Aware Minim

Sayak Paul 54 Dec 08, 2022
An educational tool to introduce AI planning concepts using mobile manipulator robots.

JEDAI Explains Decision-Making AI Virtual Machine Image The recommended way of using JEDAI is to use pre-configured Virtual Machine image that is avai

Autonomous Agents and Intelligent Robots 13 Nov 15, 2022
Contains modeling practice materials and homework for the Computational Neuroscience course at Okinawa Institute of Science and Technology

A310 Computational Neuroscience - Okinawa Institute of Science and Technology, 2022 This repository contains modeling practice materials and homework

Sungho Hong 1 Jan 24, 2022
A project which aims to protect your privacy using inexpensive hardware and easily modifiable software

Protecting your privacy using an ESP32, an IR sensor and a python script This project, which I personally call the "never-gonna-catch-me-in-the-act-ev

8 Oct 10, 2022
Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples / ICLR 2018

Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples This project is for the paper "Training Confidence-Calibrated Clas

168 Nov 29, 2022
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)

English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open

19.4k Jan 04, 2023
Anatomy of Matplotlib -- tutorial developed for the SciPy conference

Introduction This tutorial is a complete re-imagining of how one should teach users the matplotlib library. Hopefully, this tutorial may serve as insp

Matplotlib Developers 1.1k Dec 29, 2022
MIMO-UNet - Official Pytorch Implementation

MIMO-UNet - Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Rethinking Coarse-to-

Sungjin Cho 248 Jan 02, 2023
Dataset and Source code of paper 'Enhancing Keyphrase Extraction from Academic Articles with their Reference Information'.

Enhancing Keyphrase Extraction from Academic Articles with their Reference Information Overview Dataset and code for paper "Enhancing Keyphrase Extrac

15 Nov 24, 2022
A TensorFlow 2.x implementation of Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders Are Scalable Vision Learners A TensorFlow implementation of Masked Autoencoders Are Scalable Vision Learners [1]. Our implementati

Aritra Roy Gosthipaty 59 Dec 10, 2022