Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather

Overview

LiDAR fog simulation

PWC

Created by Martin Hahner at the Computer Vision Lab of ETH Zurich.

This is the official code release of the paper
Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather
by Martin Hahner, Christos Sakaridis, Dengxin Dai, and Luc van Gool, accepted at ICCV 2021.

Please visit our paper website for more details.

pointcloud_viewer

Overview

.
├── file_lists                          # contains file lists for pointcloud_viewer.py
│   └── ...
├── integral_lookup_tables              # contains lookup tables to speed up the fog simulation
│   └── ... 
├── extract_fog.py                      # to extract real fog noise* from the SeeingThroughFog dataset
├── fog_simulation.py                   # to augment a clear weather pointcloud with artificial fog (used during training)
├── generate_integral_lookup_table.py   # to precompute the integral inside the fog equation
├── pointcloud_viewer.py                # to visualize entire point clouds of different datasets with the option to augment fog into their scenes
├── README.md
└── theory.py                           # to visualize the theory behind a single LiDAR beam in foggy conditions

* Contains returns not only from fog, but also from physical objects that are closeby.

Datasets supported by pointcloud_viewer.py:

License

This software is made available for non-commercial use under a Creative Commons License.
A summary of the license can be found here.

Acknowledgments

This work is supported by Toyota via the TRACE project.

Furthermore, we would like to thank the authors of SeeingThroughFog for their great work.
In this repository, we use a fork of their original repository to visualize annotations and compare to their fog simulation. Their code is licensed via the MIT License.

Citation

If you find this work useful, please consider citing our paper.

@inproceedings{HahnerICCV21,
  author = {Hahner, Martin and Sakaridis, Christos and Dai, Dengxin and Van Gool, Luc},
  title = {Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather},
  booktitle = {IEEE International Conference on Computer Vision (ICCV)},
  year = {2021},
}

Getting Started

Setup

  1. Install anaconda.

  2. Create a new conda environment.

conda create --name foggy_lidar python=3.9 -y
  1. Activate the newly created conda environment.
conda activate foggy_lidar
  1. Install all necessary packages.
conda install matplotlib numpy opencv pandas plyfile pyopengl pyqt pyqtgraph quaternion scipy tqdm -c conda-forge -y
pip install pyquaternion
  1. Clone this repository (including submodules).
git clone [email protected]:MartinHahner/LiDAR_fog_sim.git --recursive
cd LiDAR_fog_sim

Usage

How to run the script that visualizes the theory behind a single LiDAR beam in foggy conditions:

python theory.py

theory

How to run the script that visualizes entire point clouds of different datasets:

python pointcloud_viewer.py -d <path_to_where_you_store_your_datasets>

Note:

You may also have to adjust the relative paths in pointcloud_viewer.py (right at the beginning of the file) to be compatible with your datasets relative folder structure.

Disclaimer

The code has been successfully tested on

  • Ubuntu 18.04.5 LTS
  • macOS Big Sur 11.2.1
  • Debian GNU/Linux 9.13

using conda 4.9.2.

Contributions

Please feel free to suggest improvements to this repository.
We are always open to merge usefull pull request.

HAT: Hierarchical Aggregation Transformers for Person Re-identification

HAT: Hierarchical Aggregation Transformers for Person Re-identification

11 Sep 05, 2022
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility function

Facebook Research 724 Jan 04, 2023
GraPE is a Rust/Python library for high-performance Graph Processing and Embedding.

GraPE GraPE (Graph Processing and Embedding) is a fast graph processing and embedding library, designed to scale with big graphs and to run on both of

AnacletoLab 194 Dec 29, 2022
A tensorflow model that predicts if the image is of a cat or of a dog.

Quick intro Hello and thank you for your interest in my project! This is the backend part of a two-repo application. The other part can be found here

Tudor Matei 0 Mar 08, 2022
An LSTM for time-series classification

Update 10-April-2017 And now it works with Python3 and Tensorflow 1.1.0 Update 02-Jan-2017 I updated this repo. Now it works with Tensorflow 0.12. In

Rob Romijnders 391 Dec 27, 2022
KoCLIP: Korean port of OpenAI CLIP, in Flax

KoCLIP This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX communi

Jake Tae 100 Jan 02, 2023
This project intends to use SVM supervised learning to determine whether or not an individual is diabetic given certain attributes.

Diabetes Prediction Using SVM I explore a diabetes prediction algorithm using a Diabetes dataset. Using a Support Vector Machine for my prediction alg

Jeff Shen 1 Jan 14, 2022
Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021

This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation Requirements OS: Ubuntu 16.04 or higher ver

Yujuan Ding 10 Oct 10, 2022
HGCAE Pytorch implementation. CVPR2021 accepted.

Hyperbolic Graph Convolutional Auto-Encoders Accepted to CVPR2021 🎉 Official PyTorch code of Unsupervised Hyperbolic Representation Learning via Mess

Junho Cho 37 Nov 13, 2022
Fast EMD for Python: a wrapper for Pele and Werman's C++ implementation of the Earth Mover's Distance metric

PyEMD: Fast EMD for Python PyEMD is a Python wrapper for Ofir Pele and Michael Werman's implementation of the Earth Mover's Distance that allows it to

William Mayner 433 Dec 31, 2022
Code for BMVC2021 paper "Boundary Guided Context Aggregation for Semantic Segmentation"

Boundary-Guided-Context-Aggregation Boundary Guided Context Aggregation for Semantic Segmentation Haoxiang Ma, Hongyu Yang, Di Huang In BMVC'2021 Pape

Haoxiang Ma 31 Jan 08, 2023
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
[WWW 2021] Source code for "Graph Contrastive Learning with Adaptive Augmentation"

GCA Source code for Graph Contrastive Learning with Adaptive Augmentation (WWW 2021) For example, to run GCA-Degree under WikiCS, execute: python trai

Big Data and Multi-modal Computing Group, CRIPAC 97 Jan 07, 2023
Dynamica causal Bayesian optimisation

Dynamic Causal Bayesian Optimization This is a Python implementation of Dynamic Causal Bayesian Optimization as presented at NeurIPS 2021. Abstract Th

nd308 18 Nov 22, 2022
An ML & Correlation platform for transforming disparate data points of interest into usable intelligence.

SSIDprobeCollector An ML & Correlation platform for transforming disparate data points of interest into usable intelligence. At a High level the platf

Bill Reyor 1 Jan 30, 2022
Bridging Vision and Language Model

BriVL BriVL (Bridging Vision and Language Model) 是首个中文通用图文多模态大规模预训练模型。BriVL模型在图文检索任务上有着优异的效果,超过了同期其他常见的多模态预训练模型(例如UNITER、CLIP)。 BriVL论文:WenLan: Bridgi

235 Dec 27, 2022
Brain tumor detection using CNN (InceptionResNetV2 Model)

Brain-Tumor-Detection Building a detection model using a convolutional neural network in Tensorflow & Keras. Used brain MRI images. InceptionResNetV2

1 Feb 13, 2022
[ICCV'21] Pri3D: Can 3D Priors Help 2D Representation Learning?

Pri3D: Can 3D Priors Help 2D Representation Learning? [ICCV 2021] Pri3D leverages 3D priors for downstream 2D image understanding tasks: during pre-tr

Ji Hou 124 Jan 06, 2023
A basic neural network for image segmentation.

Unet_erythema_detection A basic neural network for image segmentation. 前期准备 1.在logs文件夹中下载h5权重文件,百度网盘链接在logs文件夹中 2.将所有原图 放置在“/dataset_1/JPEGImages/”文件夹

1 Jan 16, 2022
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022