Real-time Joint Semantic Reasoning for Autonomous Driving

Overview

MultiNet

MultiNet is able to jointly perform road segmentation, car detection and street classification. The model achieves real-time speed and state-of-the-art performance in segmentation. Check out our paper for a detailed model description.

MultiNet is optimized to perform well at a real-time speed. It has two components: KittiSeg, which sets a new state-of-the art in road segmentation; and KittiBox, which improves over the baseline Faster-RCNN in both inference speed and detection performance.

The model is designed as an encoder-decoder architecture. It utilizes one VGG encoder and several independent decoders for each task. This repository contains generic code that combines several tensorflow models in one network. The code for the individual tasks is provided by the KittiSeg, KittiBox, and KittiClass repositories. These repositories are utilized as submodules in this project. This project is built to be compatible with the TensorVision back end, which allows for organizing experiments in a very clean way.

Requirements

The code requires Python 2.7, Tensorflow 1.0, as well as the following python libraries:

  • matplotlib
  • numpy
  • Pillow
  • scipy
  • runcython
  • commentjson

Those modules can be installed using: pip install numpy scipy pillow matplotlib runcython commentjson or pip install -r requirements.txt.

Setup

  1. Clone this repository: https://github.com/MarvinTeichmann/MultiNet.git
  2. Initialize all submodules: git submodule update --init --recursive
  3. cd submodules/KittiBox/submodules/utils/ && make to build cython code
  4. [Optional] Download Kitti Road Data:
    1. Retrieve kitti data url here: http://www.cvlibs.net/download.php?file=data_road.zip
    2. Call python download_data.py --kitti_url URL_YOU_RETRIEVED
  5. [Optional] Run cd submodules/KittiBox/submodules/KittiObjective2/ && make to build the Kitti evaluation code (see submodules/KittiBox/submodules/KittiObjective2/README.md for more information)

Running the model using demo.py only requires you to perform step 1-3. Step 4 and 5 is only required if you want to train your own model using train.py. Note that I recommend using download_data.py instead of downloading the data yourself. The script will also extract and prepare the data. See Section Manage data storage if you like to control where the data is stored.

To update MultiNet do:
  1. Pull all patches: git pull
  2. Update all submodules: git submodule update --init --recursive

If you forget the second step you might end up with an inconstant repository state. You will already have the new code for MultiNet but run it old submodule versions code. This can work, but I do not run any tests to verify this.

Tutorial

Getting started

Run: python demo.py --gpus 0 --input data/demo/um_000005.png to obtain a prediction using demo.png as input.

Run: python evaluate.py to evaluate a trained model.

Run: python train.py --hypes hypes/multinet2.json to train a multinet2

If you like to understand the code, I would recommend looking at demo.py first. I have documented each step as thoroughly as possible in this file.

Only training of MultiNet3 (joint detection and segmentation) is supported out of the box. The data to train the classification model is not public an those cannot be used to train the full MultiNet3 (detection, segmentation and classification). The full code is given here, so you can still train MultiNet3 if you have your own data.

Manage Data Storage

MultiNet allows to separate data storage from code. This is very useful in many server environments. By default, the data is stored in the folder MultiNet/DATA and the output of runs in MultiNet/RUNS. This behaviour can be changed by setting the bash environment variables: $TV_DIR_DATA and $TV_DIR_RUNS.

Include export TV_DIR_DATA="/MY/LARGE/HDD/DATA" in your .profile and the all data will be downloaded to /MY/LARGE/HDD/DATA/. Include export TV_DIR_RUNS="/MY/LARGE/HDD/RUNS" in your .profile and all runs will be saved to /MY/LARGE/HDD/RUNS/MultiNet

Modifying Model & Train on your own data

The model is controlled by the file hypes/multinet3.json. This file points the code to the implementation of the submodels. The MultiNet code then loads all models provided and integrates the decoders into one neural network. To train on your own data, it should be enough to modify the hype files of the submodels. A good start will be the KittiSeg model, which is very well documented.

    "models": {
        "segmentation" : "../submodules/KittiSeg/hypes/KittiSeg.json",
        "detection" : "../submodules/KittiBox/hypes/kittiBox.json",
        "road" : "../submodules/KittiClass/hypes/KittiClass.json"
    },

RUNDIR and Experiment Organization

MultiNet helps you to organize a large number of experiments. To do so, the output of each run is stored in its own rundir. Each rundir contains:

  • output.log a copy of the training output which was printed to your screen
  • tensorflow events tensorboard can be run in rundir
  • tensorflow checkpoints the trained model can be loaded from rundir
  • [dir] images a folder containing example output images. image_iter controls how often the whole validation set is dumped
  • [dir] model_files A copy of all source code need to build the model. This can be very useful of you have many versions of the model.

To keep track of all the experiments, you can give each rundir a unique name with the --name flag. The --project flag will store the run in a separate subfolder allowing to run different series of experiments. As an example, python train.py --project batch_size_bench --name size_5 will use the following dir as rundir: $TV_DIR_RUNS/KittiSeg/batch_size_bench/size_5_KittiSeg_2017_02_08_13.12.

The flag --nosave is very useful to not spam your rundir.

Useful Flags & Variabels

Here are some Flags which will be useful when working with KittiSeg and TensorVision. All flags are available across all scripts.

--hypes : specify which hype-file to use
--logdir : specify which logdir to use
--gpus : specify on which GPUs to run the code
--name : assign a name to the run
--project : assign a project to the run
--nosave : debug run, logdir will be set to debug

In addition the following TensorVision environment Variables will be useful:

$TV_DIR_DATA: specify meta directory for data
$TV_DIR_RUNS: specify meta directory for output
$TV_USE_GPUS: specify default GPU behaviour.

On a cluster it is useful to set $TV_USE_GPUS=force. This will make the flag --gpus mandatory and ensure, that run will be executed on the right GPU.

Citation

If you benefit from this code, please cite our paper:

@article{teichmann2016multinet,
  title={MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving},
  author={Teichmann, Marvin and Weber, Michael and Zoellner, Marius and Cipolla, Roberto and Urtasun, Raquel},
  journal={arXiv preprint arXiv:1612.07695},
  year={2016}
}
Owner
Marvin Teichmann
Germany Phd student. Working on Deep Learning and Computer Vision projects.
Marvin Teichmann
Continual Learning of Long Topic Sequences in Neural Information Retrieval

ContinualPassageRanking Repository for the paper "Continual Learning of Long Topic Sequences in Neural Information Retrieval". In this repository you

0 Apr 12, 2022
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
Supporting code for the paper "Dangers of Bayesian Model Averaging under Covariate Shift"

Dangers of Bayesian Model Averaging under Covariate Shift This repository contains the code to reproduce the experiments in the paper Dangers of Bayes

Pavel Izmailov 25 Sep 21, 2022
Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19 (Oral).

Pose-Transfer Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19(Oral). The paper is available here. Video generation

Tengteng Huang 679 Jan 04, 2023
[CVPR'21] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation

MonoRUn MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. CVPR 2021. [paper] Hansheng Chen, Yuyao Huang, Wei Tian*

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 96 Dec 10, 2022
A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Requirements pytorch 1.1+ torchvision 0.3+ pyclipper opencv3 gcc

zhoujun 400 Dec 26, 2022
Pytorch implementation of Decoupled Spatial-Temporal Transformer for Video Inpainting

Decoupled Spatial-Temporal Transformer for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu Sun, Xiaogang Wang, J

51 Dec 13, 2022
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.

Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h

Harnick Khera 66 Dec 16, 2022
A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset.

A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset. This repo contains scripts to train RL agents to navigate the closed world and collect vi

MUGEN 11 Oct 22, 2022
基于tensorflow 2.x的图片识别工具集

Classification.tf2 基于tensorflow 2.x的图片识别工具集 功能 粗粒度场景图片分类 细粒度场景图片分类 其他场景图片分类 模型部署 tensorflow serving本地推理和docker部署 tensorRT onnx ... 数据集 https://hyper.a

Wei Qi 1 Nov 03, 2021
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

Naoto Inoue 873 Jan 06, 2023
An abstraction layer for mathematical optimization solvers.

MathOptInterface Documentation Build Status Social An abstraction layer for mathematical optimization solvers. Replaces MathProgBase. Citing MathOptIn

JuMP-dev 284 Jan 04, 2023
Pytorch implementation of MLP-Mixer with loading pre-trained models.

MLP-Mixer-Pytorch PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision with the function of loading official ImageNet pre-trained p

Qiushi Yang 2 Sep 29, 2022
Supplementary code for the AISTATS 2021 paper "Matern Gaussian Processes on Graphs".

Matern Gaussian Processes on Graphs This repo provides an extension for gpflow with Matérn kernels, inducing variables and trainable models implemente

41 Dec 17, 2022
A simple implementation of Kalman filter in single object tracking

kalman-filter-in-single-object-tracking A simple implementation of Kalman filter in single object tracking https://www.bilibili.com/video/BV1Qf4y1J7D4

130 Dec 26, 2022
Multiple Object Extraction from Aerial Imagery with Convolutional Neural Networks

This is an implementation of Volodymyr Mnih's dissertation methods on his Massachusetts road & building dataset and my original methods that are publi

Shunta Saito 255 Sep 07, 2022
Equivariant layers for RC-complement symmetry in DNA sequence data

Equi-RC Equivariant layers for RC-complement symmetry in DNA sequence data This is a repository that implements the layers as described in "Reverse-Co

7 May 19, 2022
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks.

AllSet This is the repo for our paper: You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks. We prepared all codes and a subse

Jianhao 51 Dec 24, 2022
Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Real-ESRGAN Colab Demo for Real-ESRGAN . Portable Windows executable file. You can find more information here. Real-ESRGAN aims at developing Practica

Xintao 17.2k Jan 02, 2023