PConv-Keras - Unofficial implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions". Try at: www.fixmyphoto.ai

Overview

Partial Convolutions for Image Inpainting using Keras

Keras implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions", https://arxiv.org/abs/1804.07723. A huge shoutout the authors Guilin Liu, Fitsum A. Reda, Kevin J. Shih, Ting-Chun Wang, Andrew Tao and Bryan Catanzaro from NVIDIA corporation for releasing this awesome paper, it's been a great learning experience for me to implement the architecture, the partial convolutional layer, and the loss functions.

Dependencies

  • Python 3.6
  • Keras 2.2.4
  • Tensorflow 1.12

How to use this repository

The easiest way to try a few predictions with this algorithm is to go to www.fixmyphoto.ai, where I've deployed it on a serverless React application with AWS lambda functions handling inference.

If you want to dig into the code, the primary implementations of the new PConv2D keras layer as well as the UNet-like architecture using these partial convolutional layers can be found in libs/pconv_layer.py and libs/pconv_model.py, respectively - this is where the bulk of the implementation can be found. Beyond this I've set up four jupyter notebooks, which details the several steps I went through while implementing the network, namely:

Step 1: Creating random irregular masks
Step 2: Implementing and testing the implementation of the PConv2D layer
Step 3: Implementing and testing the UNet architecture with PConv2D layers
Step 4: Training & testing the final architecture on ImageNet
Step 5: Simplistic attempt at predicting arbitrary image sizes through image chunking

Pre-trained weights

I've ported the VGG16 weights from PyTorch to keras; this means the 1/255. pixel scaling can be used for the VGG16 network similarly to PyTorch.

Training on your own dataset

You can either go directly to step 4 notebook, or alternatively use the CLI (make sure to download the converted VGG16 weights):

python main.py \
    --name MyDataset \
    --train TRAINING_PATH \
    --validation VALIDATION_PATH \
    --test TEST_PATH \
    --vgg_path './data/logs/pytorch_to_keras_vgg16.h5'

Implementation details

Details of the implementation are in the paper itself, however I'll try to summarize some details here.

Mask Creation

In the paper they use a technique based on occlusion/dis-occlusion between two consecutive frames in videos for creating random irregular masks - instead I've opted for simply creating a simple mask-generator function which uses OpenCV to draw some random irregular shapes which I then use for masks. Plugging in a new mask generation technique later should not be a problem though, and I think the end results are pretty decent using this method as well.

Partial Convolution Layer

A key element in this implementation is the partial convolutional layer. Basically, given the convolutional filter W and the corresponding bias b, the following partial convolution is applied instead of a normal convolution:

where ⊙ is element-wise multiplication and M is a binary mask of 0s and 1s. Importantly, after each partial convolution, the mask is also updated, so that if the convolution was able to condition its output on at least one valid input, then the mask is removed at that location, i.e.

The result of this is that with a sufficiently deep network, the mask will eventually be all ones (i.e. disappear)

UNet Architecture

Specific details of the architecture can be found in the paper, but essentially it's based on a UNet-like structure, where all normal convolutional layers are replace with partial convolutional layers, such that in all cases the image is passed through the network alongside the mask. The following provides an overview of the architecture.

Loss Function(s)

The loss function used in the paper is kinda intense, and can be reviewed in the paper. In short it includes:

  • Per-pixel losses both for maskes and un-masked regions
  • Perceptual loss based on ImageNet pre-trained VGG-16 (pool1, pool2 and pool3 layers)
  • Style loss on VGG-16 features both for predicted image and for computed image (non-hole pixel set to ground truth)
  • Total variation loss for a 1-pixel dilation of the hole region

The weighting of all these loss terms are as follows:

Training Procedure

Network was trained on ImageNet with a batch size of 1, and each epoch was specified to be 10,000 batches long. Training was furthermore performed using the Adam optimizer in two stages since batch normalization presents an issue for the masked convolutions (since mean and variance is calculated for hole pixels).

Stage 1 Learning rate of 0.0001 for 50 epochs with batch normalization enabled in all layers

Stage 2 Learning rate of 0.00005 for 50 epochs where batch normalization in all encoding layers is disabled.

Training time for shown images was absolutely crazy long, but that is likely because of my poor personal setup. The few tests I've tried on a 1080Ti (with batch size of 4) indicates that training time could be around 10 days, as specified in the paper.

Owner
Mathias Gruber
Chief Data Scientist
Mathias Gruber
AgeGuesser: deep learning based age estimation system. Powered by EfficientNet and Yolov5

AgeGuesser AgeGuesser is an end-to-end, deep-learning based Age Estimation system, presented at the CAIP 2021 conference. You can find the related pap

5 Nov 10, 2022
No Code AI/ML platform

NoCodeAIML No Code AI/ML platform - Community Edition Video credits: Uday Kiran Typical No Code AI/ML Platform will have features like drag and drop,

Bhagvan Kommadi 5 Jan 28, 2022
Implements the training, testing and editing tools for "Pluralistic Image Completion"

Pluralistic Image Completion ArXiv | Project Page | Online Demo | Video(demo) This repository implements the training, testing and editing tools for "

Chuanxia Zheng 615 Dec 08, 2022
Betafold - AlphaFold with tunings

BetaFold We (hegelab.org) craeted this standalone AlphaFold (AlphaFold-Multimer,

2 Aug 11, 2022
[ICRA 2022] CaTGrasp: Learning Category-Level Task-Relevant Grasping in Clutter from Simulation

This is the official implementation of our paper: Bowen Wen, Wenzhao Lian, Kostas Bekris, and Stefan Schaal. "CaTGrasp: Learning Category-Level Task-R

Bowen Wen 199 Jan 04, 2023
In this project, we'll be making our own screen recorder in Python using some libraries.

Screen Recorder in Python Project Description: In this project, we'll be making our own screen recorder in Python using some libraries. Requirements:

Hassan Shahzad 4 Jan 24, 2022
Implementations of orthogonal and semi-orthogonal convolutions in the Fourier domain with applications to adversarial robustness

Orthogonalizing Convolutional Layers with the Cayley Transform This repository contains implementations and source code to reproduce experiments for t

CMU Locus Lab 36 Dec 30, 2022
PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders: A PyTorch Implementation This is a PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners: @

Meta Research 4.8k Jan 04, 2023
This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints

CLGo This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints An earlier

刘芮金 32 Dec 20, 2022
Voxel-based Network for Shape Completion by Leveraging Edge Generation (ICCV 2021, oral)

Voxel-based Network for Shape Completion by Leveraging Edge Generation This is the PyTorch implementation for the paper "Voxel-based Network for Shape

10 Dec 04, 2022
Public Models considered for emotion estimation from EEG

Emotion-EEG Set of models for emotion estimation from EEG. Composed by the combination of two deep-learing models learning together (RNN and CNN) with

Victor Delvigne 21 Dec 23, 2022
wgan, wgan2(improved, gp), infogan, and dcgan implementation in lasagne, keras, pytorch

Generative Adversarial Notebooks Collection of my Generative Adversarial Network implementations Most codes are for python3, most notebooks works on C

tjwei 1.5k Dec 16, 2022
Official implementation for: Blended Diffusion for Text-driven Editing of Natural Images.

Blended Diffusion for Text-driven Editing of Natural Images Blended Diffusion for Text-driven Editing of Natural Images Omri Avrahami, Dani Lischinski

328 Dec 30, 2022
The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".

Magnetic Graph Convolutional Networks About The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via M

3 Feb 25, 2022
Python package for downloading ECMWF reanalysis data and converting it into a time series format.

ecmwf_models Readers and converters for data from the ECMWF reanalysis models. Written in Python. Works great in combination with pytesmo. Citation If

TU Wien - Department of Geodesy and Geoinformation 31 Dec 26, 2022
Code for ICCV2021 paper SPEC: Seeing People in the Wild with an Estimated Camera

SPEC: Seeing People in the Wild with an Estimated Camera [ICCV 2021] SPEC: Seeing People in the Wild with an Estimated Camera, Muhammed Kocabas, Chun-

Muhammed Kocabas 187 Dec 26, 2022
Codes for "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation"

CSDI This is the github repository for the NeurIPS 2021 paper "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation

106 Jan 04, 2023
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
Semantic Segmentation in Pytorch. Network include: FCN、FCN_ResNet、SegNet、UNet、BiSeNet、BiSeNetV2、PSPNet、DeepLabv3_plus、 HRNet、DDRNet

🚀 If it helps you, click a star! ⭐ Update log 2020.12.10 Project structure adjustment, the previous code has been deleted, the adjustment will be re-

Deeachain 269 Jan 04, 2023
Auxiliary data to the CHIIR paper Searching to Learn with Instructional Scaffolding

Searching to Learn with Instructional Scaffolding This is the data and analysis code for the paper "Searching to Learn with Instructional Scaffolding"

Arthur Câmara 2 Mar 02, 2022