Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Related tags

Deep LearningSCF
Overview

Sphere Confidence Face (SCF)

This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen Li, Xu Jianqing, Xiaqing Xu, Pengcheng Shen, Shaoxin Li, and Bryan Hooi. Spherical Confidence Learning for Face Recognition, IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021 with Appendices.

Empirical Results

IJB-B ResNet100 1e-5 ResNet100 1e-4 IJB-C ResNet100 1e-5 ResNet100 1e-4
CosFace 89.81 94.59 CosFace 93.86 95.95
+ PFE-G 89.96 94.64 + PFE-G 94.09 96.04
+ PFE-v N/A N/A + PFE-v N/A N/A
+ SCF-G 89.97 94.56 + SCF-G 94.15 96.02
+ SCF 91.02 94.95 + SCF 94.78 96.22
ArcFace 89.33 94.20 ArcFace 93.15 95.60
+ PFE-G 89.55 94.30 + PFE-G 92.95 95.32
+ PFE-v N/A N/A + PFE-v N/A N/A
+ SCF-G 89.52 94.24 + SCF-G 93.85 95.33
+ SCF 90.68 94.74 + SCF 94.04 96.09

Requirements

  • python==3.6.0
  • torch==1.6.0
  • torchvision==0.7.0
  • tensorboard==2.4.0

Getting Started

Training

Training consists of two separate steps:

  1. Train ResNet100 imported from backbones.py as the deterministic backbone using spherical loss, e.g. ArcFace loss.
  2. Train SCF based on the pretrained backbone by specifying the arguments including [GPU_IDS], [OUTPUT_DIR], [PATH_BACKBONE_CKPT] (the path of the pretrained backbone checkpoint) and [PATH_FC_CKPT] (the path of the pretrained fc-layer checkpoint) and then running the command:
python train.py \
    --dataset "ms1m" \
    --seed 777 \
    --gpu_ids [GPU_IDS] \
    --batch_size 1024 \
    --output_dir [OUTPUT_DIR] \
    --saved_bkb [PATH_BACKBONE_CKPT] \
    --saved_fc [PATH_FC_CKPT] \
    --num_workers 8 \
    --epochs 30 \
    --lr 3e-5 \
    --lr_scheduler "StepLR" \
    --step_size 2 \
    --gamma 0.5 \
    --convf_dim 25088 \
    --z_dim 512 \
    --radius 64 \
    --max_grad_clip 0 \
    --max_grad_norm 0 \
    --tensorboard

Test

IJB benchmark: use $\kappa$ as confidence score for each face image to aggregate representations as in Eqn (14). Refer to the standard IJB benchmark for implementation.

1v1 verification benchmark: use Eqn (13) as the similarity score.

Other Implementations

SCF in TFace: SCF

Citation

@inproceedings{li2021spherical,
  title={Spherical Confidence Learning for Face Recognition},
  author={Li, Shen and Xu, Jianqing and Xu, Xiaqing and Shen, Pengcheng and Li, Shaoxin and Hooi, Bryan},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={15629--15637},
  year={2021}
}
Owner
Maths
Maths
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022
PenguinSpeciesPredictionML - Basic model to predict Penguin species based on beak size and sex.

Penguin Species Prediction (ML) 🐧 πŸ‘¨πŸ½β€πŸ’» What? πŸ’» This project is a basic model using sklearn methods to predict Penguin species based on beak size

Tucker Paron 0 Jan 08, 2022
Implementation of ConvMixer for "Patches Are All You Need? 🀷"

Patches Are All You Need? 🀷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?" by Asher

CMU Locus Lab 934 Jan 08, 2023
simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

RamΓ³n Casero 1 Jan 07, 2022
This is a computer vision based implementation of the popular childhood game 'Hand Cricket/Odd or Even' in python

Hand Cricket Table of Content Overview Installation Game rules Project Details Future scope Overview This is a computer vision based implementation of

Abhinav R Nayak 6 Jan 12, 2022
Dungeons and Dragons randomized content generator

Component based Dungeons and Dragons generator Supports Entity/Monster Generation NPC Generation Weapon Generation Encounter Generation Environment Ge

Zac 3 Dec 04, 2021
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022
'Aligned mixture of latent dynamical systems' (amLDS) for stimulus decoding probabilistic manifold alignment across animals. P. Herrero-Vidal et al. NeurIPS 2021 code.

Across-animal odor decoding by probabilistic manifold alignment (NeurIPS 2021) This repository is the official implementation of aligned mixture of la

Pedro Herrero-Vidal 3 Jul 12, 2022
Neighborhood Reconstructing Autoencoders

Neighborhood Reconstructing Autoencoders The official repository for Neighborhood Reconstructing Autoencoders (Lee, Kwon, and Park, NeurIPS 2021). T

Yonghyeon Lee 24 Dec 14, 2022
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Brent Griffin 172 Dec 21, 2022
Addon and nodes for working with structural biology and molecular data in Blender.

Molecular Nodes 🧬 πŸ”¬ πŸ’» Buy Me a Coffee to Keep Development Going! Join a Community of Blender SciVis People! What is Molecular Nodes? Molecular Node

Brady Johnston 456 Jan 08, 2023
CONditionals for Ordinal Regression and classification in PyTorch

CONDOR pytorch implementation for ordinal regression with deep neural networks. Documentation: https://GarrettJenkinson.github.io/condor_pytorch About

7 Jul 25, 2022
A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

Yunxia Zhao 3 Dec 29, 2022
(ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning"

CLNet (ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning" [project page] [paper] Citing CLNet If yo

Chen Zhao 22 Aug 26, 2022
A tensorflow model that predicts if the image is of a cat or of a dog.

Quick intro Hello and thank you for your interest in my project! This is the backend part of a two-repo application. The other part can be found here

Tudor Matei 0 Mar 08, 2022
Action Recognition for Self-Driving Cars

Action Recognition for Self-Driving Cars This repo contains the codes for the 2021 Fall semester project "Action Recognition for Self-Driving Cars" at

VITA lab at EPFL 3 Apr 07, 2022
Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP.

Hire-Wave-MLP.pytorch Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP Resul

Nevermore 29 Oct 28, 2022
SmartSim Infrastructure Library.

Home Install Documentation Slack Invite Cray Labs SmartSim SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and Ten

Cray Labs 139 Jan 01, 2023
Trained on Simulated Data, Tested in the Real World

Trained on Simulated Data, Tested in the Real World

livox 43 Nov 18, 2022