Meli Data Challenge 2021 - First Place Solution

Overview

Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021, first place in both public and private leaderboards.

The Model

My final model is an ensemble combining recurrent neural networks and XGBoost regressors. Neural networks are trained to predict the stock days probability distribution using the RPS as loss function. XGBoost regressors are trained to predict stock days using different objectives, here the intuition behind this:

  • MSE loss: the regressor trained with this loss will output values close to the expected mean.
  • Pseudo-Huber loss: an alternative for the MAE loss, this regressor outputs values close to the expected median.
  • Quantile loss: 11 regressors are trained using a quantile loss with alpha 0, 0.1, 0.2, ..., 1. This helps to build the final probability distribution.

The outputs of all these level-0 models are concatenated to train a feedforward neural network with the RPS as loss function.

diagram

The last 30 days of the train dataset are used to generate the labels and the target stock input. The remaining 29 days are used to generate the time series input.

The train/validation split is done at a sku level:

  • For level-0 models: 450000 sku's are used for training and the rest for validation.
  • For the level-1 model: the sku's used for training level-0 models are removed from the dataset and the remaining sku's are split again into train/validation.

Once all models are trained, the last 29 days of the train dataset and the provided target stock values are used as input to generate the submission.

Disclaimer: the entire solution lacks some fine tuning since I came up with this little ensemble monster towards the end of the competition. I didn't have the time to fine-tune each model (there are technically 16 models to tune if we consider each quantile regressor as an independent model).

How to run the solution

Requirements

  • TensorFlow v2.
  • Pandas.
  • Numpy.
  • Scikit-learn.

CUDA drivers and a CUDA-compatible GPU is required (I didn't have the time to test this on a CPU).

Some scripts require up to 30GB of RAM (again, I didn't have the time to implement a more memory-efficient solution).

The solution was tested on Ubuntu 20.04 with Python 3.8.10.

Downloading the dataset

Download the dataset files from https://ml-challenge.mercadolibre.com/downloads and put them into the dataset/ directory.

On linux, you can do that by running:

cd dataset && wget \
https://meli-data-challenge.s3.amazonaws.com/2021/test_data.csv \
https://meli-data-challenge.s3.amazonaws.com/2021/train_data.parquet \
https://meli-data-challenge.s3.amazonaws.com/2021/items_static_metadata_full.jl

Running the scripts

All-in-one script

A convenient script to run the entire solution is provided:

cd src
./run-solution.sh

Note: the entire process may take more than 3 hours to run.

Step by step

If you find trouble running the al-in-one script, you can run the solution step by step following the instructions bellow:

cd into the src directory:

cd src

Extract time series from the dataset:

python3 ./preprocessing/extract-time-series.py

Generate a supervised learning dataset:

python3 ./preprocessing/generate-sl-dataset.py

Train all level-0 models:

python3 ./train-all.py

Train the level-1 ensemble:

python3 ./train-ensemble.py

Generate the submission file and gzip it:

python3 ./generate-submission.py && gzip ./submission.csv

Utility scripts

The training_scripts directory contains some scripts to train each model separately, example usage:

python3 ./training_scripts/train-lstm.py
Owner
Matias Moreyra
Electronics Engineer, Software Developer.
Matias Moreyra
Codes for the ICCV'21 paper "FREE: Feature Refinement for Generalized Zero-Shot Learning"

FREE This repository contains the reference code for the paper "FREE: Feature Refinement for Generalized Zero-Shot Learning". [arXiv][Paper] 1. Prepar

Shiming Chen 28 Jul 29, 2022
Only valid pull requests will be allowed. Use python only and readme changes will not be accepted.

❌ This repo is excluded from hacktoberfest This repo is for python beginners and contains lot of beginner python projects for practice. You can also s

Prajjwal Pathak 50 Dec 28, 2022
Measure WWjj polarization fraction

WlWl Polarization Measure WWjj polarization fraction Paper: arXiv:2109.09924 Notice: This code can only be used for the inference process, if you want

4 Apr 10, 2022
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
A sequence of Jupyter notebooks featuring the 12 Steps to Navier-Stokes

CFD Python Please cite as: Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of Open Sour

Barba group 2.6k Dec 30, 2022
GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training @ KDD 2020

GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training Original implementation for paper GCC: Graph Contrastive Coding for Graph Neural N

THUDM 274 Dec 27, 2022
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
Deep Learning Models for Causal Inference

Extensive tutorials for learning how to build deep learning models for causal inference using selection on observables in Tensorflow 2.

Bernard J Koch 151 Dec 31, 2022
5 Jan 05, 2023
Official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th ICML Workshop on AutoML)

Automated Learning Rate Scheduler for Large-Batch Training The official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th

Kakao Brain 35 Jan 04, 2023
A baseline code for VSPW

A baseline code for VSPW Preparation Download VSPW dataset The VSPW dataset with extracted frames and masks is available here.

28 Aug 22, 2022
code for TCL: Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022

Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022 News (03/16/2022) upload retrieval checkpoints finetuned on COCO and Flickr T

187 Jan 02, 2023
Human Dynamics from Monocular Video with Dynamic Camera Movements

Human Dynamics from Monocular Video with Dynamic Camera Movements Ri Yu, Hwangpil Park and Jehee Lee Seoul National University ACM Transactions on Gra

215 Jan 01, 2023
FaceAnon - Anonymize people in images and videos using yolov5-crowdhuman

Face Anonymizer Blur faces from image and video files in /input/ folder. Require

22 Nov 03, 2022
NeuralTalk is a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences.

#NeuralTalk Warning: Deprecated. Hi there, this code is now quite old and inefficient, and now deprecated. I am leaving it on Github for educational p

Andrej 5.3k Jan 07, 2023
DIRL: Domain-Invariant Representation Learning

DIRL: Domain-Invariant Representation Learning Domain-Invariant Representation Learning (DIRL) is a novel algorithm that semantically aligns both the

Ajay Tanwani 30 Nov 07, 2022
1st Solution For NeurIPS 2021 Competition on ML4CO Dual Task

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

MEGVII Research 24 Sep 08, 2022
PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our paper

Flow Gaussian Mixture Model (FlowGMM) This repository contains a PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our pa

Pavel Izmailov 124 Nov 06, 2022
keyframes-CNN-RNN(action recognition)

keyframes-CNN-RNN(action recognition) Environment: python=3.7 pytorch=1.2 Datasets: Following the format of UCF101 action recognition. Run steps: Mo

4 Feb 09, 2022
A PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-Supervised Learning Framework".

Mugs: A Multi-Granular Self-Supervised Learning Framework This is a PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-

Sea AI Lab 62 Nov 08, 2022