naked is a Python tool which allows you to strip a model and only keep what matters for making predictions.

Related tags

Deep Learningnaked
Overview

naked

naked is a Python tool which allows you to strip a model and only keep what matters for making predictions. The result is a pure Python function with no third-party dependencies that you can simply copy/paste wherever you wish.

This is simpler than deploying an API endpoint or loading a serialized model. The jury is still out on whether this is sane or not. Of course I'm not the first one to have done this, for instance see sklearn-porter.

Installation

pip install git+https://github.com/MaxHalford/naked

Examples

sklearn.linear_model.LinearRegression

First, we fit a model.

import numpy as np
from sklearn.linear_model import LinearRegression

X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
y = np.dot(X, np.array([1, 2])) + 3
lin_reg = LinearRegression().fit(X, y)
lin_reg.fit(X, y)

Then, we strip it.

import naked

print(naked.strip(lin_reg))

Which produces the following output.

def linear_regression(x):

    coef_ = [1.0000000000000002, 1.9999999999999991]
    intercept_ = 3.0000000000000018

    return intercept_ + sum(xi * wi for xi, wi in enumerate(coef_))

sklearn.pipeline.Pipeline

import naked
from sklearn import linear_model
from sklearn import feature_extraction
from sklearn import pipeline
from sklearn import preprocessing

model = pipeline.make_pipeline(
    feature_extraction.text.TfidfVectorizer(),
    preprocessing.Normalizer(),
    linear_model.LogisticRegression(solver='liblinear')
)

docs = ['Sad', 'Angry', 'Happy', 'Joyful']
is_positive = [False, False, True, True]

model.fit(docs, is_positive)

print(naked.strip(model))

This produces the following output.

def tfidf_vectorizer(x):

    lowercase = True
    norm = 'l2'
    vocabulary_ = {'sad': 3, 'angry': 0, 'happy': 1, 'joyful': 2}
    idf_ = [1.916290731874155, 1.916290731874155, 1.916290731874155, 1.916290731874155]

    import re

    if lowercase:
        x = x.lower()

    # Tokenize
    x = re.findall(r"(?u)\b\w\w+\b", x)
    x = [xi for xi in x if len(xi) > 1]

    # Count term frequencies
    from collections import Counter
    tf = Counter(x)
    total = sum(tf.values())

    # Compute the TF-IDF of each tokenized term
    tfidf = [0] * len(vocabulary_)
    for term, freq in tf.items():
        try:
            index = vocabulary_[term]
        except KeyError:
            continue
        tfidf[index] = freq * idf_[index] / total

    # Apply normalization
    if norm == 'l2':
        norm_val = sum(xi ** 2 for xi in tfidf) ** .5

    return [v / norm_val for v in tfidf]

def normalizer(x):

    norm = 'l2'

    if norm == 'l2':
        norm_val = sum(xi ** 2 for xi in x) ** .5
    elif norm == 'l1':
        norm_val = sum(abs(xi) for xi in x)
    elif norm == 'max':
        norm_val = max(abs(xi) for xi in x)

    return [xi / norm_val for xi in x]

def logistic_regression(x):

    coef_ = [[-0.40105811611957726, 0.40105811611957726, 0.40105811611957726, -0.40105811611957726]]
    intercept_ = [0.0]

    import math

    logits = [
        b + sum(xi * wi for xi, wi in zip(x, w))
        for w, b in zip(coef_, intercept_)
    ]

    # Sigmoid activation for binary classification
    if len(logits) == 1:
        p_true = 1 / (1 + math.exp(-logits[0]))
        return [1 - p_true, p_true]

    # Softmax activation for multi-class classification
    z_max = max(logits)
    exp = [math.exp(z - z_max) for z in logits]
    exp_sum = sum(exp)
    return [e / exp_sum for e in exp]

def pipeline(x):
    x = tfidf_vectorizer(x)
    x = normalizer(x)
    x = logistic_regression(x)
    return x

FAQ

What models are supported?

>>> import naked
>>> print(naked.AVAILABLE)
sklearn
    LinearRegression
    LogisticRegression
    Normalizer
    StandardScaler
    TfidfVectorizer

Will this work for all library versions?

Not by design. A release of naked is intended to support a library above a particular version. If we notice that naked doesn't work for a newer version of a given library, then a new version of naked should be released to handle said library version. You may refer to the pyproject.toml file to view library support.

How can I trust this is correct?

This package is really easy to unit test. One simply has to compare the outputs of the model with its "naked" version and check that the outputs are identical. Check out the test_naked.py file if you're curious.

How should I handle feature names?

Let's take the example of a multi-class logistic regression trained on the wine dataset.

from sklearn import datasets
from sklearn import linear_model
from sklearn import pipeline
from sklearn import preprocessing

dataset = datasets.load_wine()
X = dataset.data
y = dataset.target
model = pipeline.make_pipeline(
    preprocessing.StandardScaler(),
    linear_model.LogisticRegression()
)
model.fit(X, y)

By default, the strip function produces a function that takes as input a list of feature values. Instead, let's say we want to evaluate the function on a dictionary of features, thus associating each feature value with a name.

x = dict(zip(dataset.feature_names, X[0]))
print(x)
{'alcohol': 14.23,
 'malic_acid': 1.71,
 'ash': 2.43,
 'alcalinity_of_ash': 15.6,
 'magnesium': 127.0,
 'total_phenols': 2.8,
 'flavanoids': 3.06,
 'nonflavanoid_phenols': 0.28,
 'proanthocyanins': 2.29,
 'color_intensity': 5.64,
 'hue': 1.04,
 'od280/od315_of_diluted_wines': 3.92,
 'proline': 1065.0}

Passing the feature names to the strip function will add a function that maps the features to a list.

naked.strip(model, input_names=dataset.feature_names)
def handle_input_names(x):
    names = ['alcohol', 'malic_acid', 'ash', 'alcalinity_of_ash', 'magnesium', 'total_phenols', 'flavanoids', 'nonflavanoid_phenols', 'proanthocyanins', 'color_intensity', 'hue', 'od280/od315_of_diluted_wines', 'proline']
    return [x[name] for name in names]

def standard_scaler(x):

    mean_ = [13.000617977528083, 2.336348314606741, 2.3665168539325854, 19.49494382022472, 99.74157303370787, 2.295112359550562, 2.0292696629213474, 0.36185393258426973, 1.5908988764044953, 5.058089882022473, 0.9574494382022468, 2.6116853932584254, 746.8932584269663]
    var_ = [0.6553597304633259, 1.241004080924126, 0.07484180027774268, 11.090030614821362, 202.84332786264366, 0.3894890323191514, 0.9921135115515715, 0.015401619113748266, 0.32575424820098453, 5.344255847629093, 0.05195144969069561, 0.5012544628203511, 98609.60096578706]
    with_mean = True
    with_std = True

    def scale(x, m, v):
        if with_mean:
            x -= m
        if with_std:
            x /= v ** .5
        return x

    return [scale(xi, m, v) for xi, m, v in zip(x, mean_, var_)]

def logistic_regression(x):

    coef_ = [[0.8101347947338147, 0.20382073148760085, 0.47221241678911957, -0.8447843882542064, 0.04952904623674445, 0.21372479616642068, 0.6478750705319883, -0.19982499112990385, 0.13833867563545404, 0.17160966151451867, 0.13090887117218597, 0.7259506896985365, 1.07895948707047], [-1.0103233753629153, -0.44045952703036084, -0.8480739967718842, 0.5835732316278703, -0.09770602368275362, 0.027527982220605866, 0.35399157401383297, 0.21278279386396404, 0.2633610495737497, -1.0412707677956505, 0.6825215991118386, 0.05287634940648419, -1.1407929345327175], [0.20018858062910203, 0.23663879554275832, 0.37586157998276365, 0.26121115662633365, 0.048176977446007865, -0.2412527783870254, -1.0018666445458222, -0.012957802734061021, -0.40169972520920566, 0.8696611062811332, -0.8134304702840255, -0.7788270391050198, 0.061833447462247046]]
    intercept_ = [0.41229358315867787, 0.7048164121833935, -1.1171099953420585]

    import math

    logits = [
        b + sum(xi * wi for xi, wi in zip(x, w))
        for w, b in zip(coef_, intercept_)
    ]

    # Sigmoid activation for binary classification
    if len(logits) == 1:
        p_true = 1 / (1 + math.exp(-logits[0]))
        return [1 - p_true, p_true]

    # Softmax activation for multi-class classification
    z_max = max(logits)
    exp = [math.exp(z - z_max) for z in logits]
    exp_sum = sum(exp)
    return [e / exp_sum for e in exp]

def pipeline(x):
    x = handle_input_names(x)
    x = standard_scaler(x)
    x = logistic_regression(x)
    return x

What about output names?

You can also specify the output_names parameter to associate each output value with a name. Of course, this doesn't work for cases where a single value is produced, such as single-target regression.

naked.strip(model, input_names=dataset.feature_names, output_names=dataset.target_names)
def handle_input_names(x):
    names = ['alcohol', 'malic_acid', 'ash', 'alcalinity_of_ash', 'magnesium', 'total_phenols', 'flavanoids', 'nonflavanoid_phenols', 'proanthocyanins', 'color_intensity', 'hue', 'od280/od315_of_diluted_wines', 'proline']
    return [x[name] for name in names]

def standard_scaler(x):

    mean_ = [13.000617977528083, 2.336348314606741, 2.3665168539325854, 19.49494382022472, 99.74157303370787, 2.295112359550562, 2.0292696629213474, 0.36185393258426973, 1.5908988764044953, 5.058089882022473, 0.9574494382022468, 2.6116853932584254, 746.8932584269663]
    var_ = [0.6553597304633259, 1.241004080924126, 0.07484180027774268, 11.090030614821362, 202.84332786264366, 0.3894890323191514, 0.9921135115515715, 0.015401619113748266, 0.32575424820098453, 5.344255847629093, 0.05195144969069561, 0.5012544628203511, 98609.60096578706]
    with_mean = True
    with_std = True

    def scale(x, m, v):
        if with_mean:
            x -= m
        if with_std:
            x /= v ** .5
        return x

    return [scale(xi, m, v) for xi, m, v in zip(x, mean_, var_)]

def logistic_regression(x):

    coef_ = [[0.8101347947338147, 0.20382073148760085, 0.47221241678911957, -0.8447843882542064, 0.04952904623674445, 0.21372479616642068, 0.6478750705319883, -0.19982499112990385, 0.13833867563545404, 0.17160966151451867, 0.13090887117218597, 0.7259506896985365, 1.07895948707047], [-1.0103233753629153, -0.44045952703036084, -0.8480739967718842, 0.5835732316278703, -0.09770602368275362, 0.027527982220605866, 0.35399157401383297, 0.21278279386396404, 0.2633610495737497, -1.0412707677956505, 0.6825215991118386, 0.05287634940648419, -1.1407929345327175], [0.20018858062910203, 0.23663879554275832, 0.37586157998276365, 0.26121115662633365, 0.048176977446007865, -0.2412527783870254, -1.0018666445458222, -0.012957802734061021, -0.40169972520920566, 0.8696611062811332, -0.8134304702840255, -0.7788270391050198, 0.061833447462247046]]
    intercept_ = [0.41229358315867787, 0.7048164121833935, -1.1171099953420585]

    import math

    logits = [
        b + sum(xi * wi for xi, wi in zip(x, w))
        for w, b in zip(coef_, intercept_)
    ]

    # Sigmoid activation for binary classification
    if len(logits) == 1:
        p_true = 1 / (1 + math.exp(-logits[0]))
        return [1 - p_true, p_true]

    # Softmax activation for multi-class classification
    z_max = max(logits)
    exp = [math.exp(z - z_max) for z in logits]
    exp_sum = sum(exp)
    return [e / exp_sum for e in exp]

def handle_output_names(x):
    names = ['class_0' 'class_1' 'class_2']
    return dict(zip(names, x))

def pipeline(x):
    x = handle_input_names(x)
    x = standard_scaler(x)
    x = logistic_regression(x)
    x = handle_output_names(x)
    return x

As you can see, by specifying input_names as well as output_names, we obtain a pipeline of functions which takes as input a dictionary and produces a dictionary.

Development workflow

git clone https://github.com/MaxHalford/naked
cd naked
poetry install
poetry shell
pytest

Things to do

  • Implement more models. For instance it should quite straightforward to support LightGBM.
  • Remove useless branching conditions. Parameters are currently handled via if statements. Ideally it would be nice to remove the if statements and only keep the code that will actually run.

License

MIT

Owner
Max Halford
Data wizard @alan-eu. PhD in machine learning applied to query optimization. Kaggle competitions Master. Online machine learning nut.
Max Halford
[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Unsupervised Object-Level Representation Learning from Scene Images This repository contains the official PyTorch implementation of the ORL algorithm

Jiahao Xie 55 Dec 03, 2022
A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning.

Open3DSOT A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning. The official code release of BAT an

Kangel Zenn 172 Dec 23, 2022
Corruption Invariant Learning for Re-identification

Corruption Invariant Learning for Re-identification The official repository for Benchmarks for Corruption Invariant Person Re-identification (NeurIPS

Minghui Chen 73 Dec 08, 2022
PyTorch implementation of the Pose Residual Network (PRN)

Pose Residual Network This repository contains a PyTorch implementation of the Pose Residual Network (PRN) presented in our ECCV 2018 paper: Muhammed

Salih Karagoz 289 Nov 28, 2022
Explore extreme compression for pre-trained language models

Code for paper "Exploring extreme parameter compression for pre-trained language models ICLR2022"

twinkle 16 Nov 14, 2022
Storage-optimizer - Identify potintial optimizations on the cloud storage accounts

Storage Optimizer Identify potintial optimizations on the cloud storage accounts

Zaher Mousa 1 Feb 13, 2022
Code for "Causal autoregressive flows" - AISTATS, 2021

Code for "Causal Autoregressive Flow" This repository contains code to run and reproduce experiments presented in Causal Autoregressive Flows, present

Ricardo Pio Monti 35 Dec 16, 2022
Training neural models with structured signals.

Neural Structured Learning in TensorFlow Neural Structured Learning (NSL) is a new learning paradigm to train neural networks by leveraging structured

955 Jan 02, 2023
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
MoveNet Single Pose on OpenVINO

MoveNet Single Pose tracking on OpenVINO Running Google MoveNet Single Pose models on OpenVINO. A convolutional neural network model that runs on RGB

35 Nov 11, 2022
2 Jul 19, 2022
Official Implementation of SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations

Official Implementation of SimIPU SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations Since

Zhyever 37 Dec 01, 2022
Unified MultiWOZ evaluation scripts for the context-to-response task.

MultiWOZ Context-to-Response Evaluation Standardized and easy to use Inform, Success, BLEU ~ See the paper ~ Easy-to-use scripts for standardized eval

Tomáš Nekvinda 38 Dec 13, 2022
Latex code for making neural networks diagrams

PlotNeuralNet Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, l

Haris Iqbal 18.6k Jan 01, 2023
Conditional Generative Adversarial Networks (CGAN) for Mobility Data Fusion

This code implements the paper, Kim et al. (2021). Imputing Qualitative Attributes for Trip Chains Extracted from Smart Card Data Using a Conditional Generative Adversarial Network. Transportation Re

Eui-Jin Kim 2 Feb 03, 2022
Code I use to automatically update my videos' metadata on YouTube

mCodingYouTube This repository contains the code I use to automatically update my videos' metadata on YouTube, including: titles, descriptions, tags,

James Murphy 19 Oct 07, 2022
Pretraining Representations For Data-Efficient Reinforcement Learning

Pretraining Representations For Data-Efficient Reinforcement Learning Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Ch

Mila 40 Dec 11, 2022
Code for DeepCurrents: Learning Implicit Representations of Shapes with Boundaries

DeepCurrents | Webpage | Paper DeepCurrents: Learning Implicit Representations of Shapes with Boundaries David Palmer*, Dmitriy Smirnov*, Stephanie Wa

Dima Smirnov 36 Dec 08, 2022
A pytorch &keras implementation and demo of Fastformer.

Fastformer Notes from the authors Pytorch/Keras implementation of Fastformer. The keras version only includes the core fastformer attention part. The

153 Dec 28, 2022
Official implementation of "Dynamic Anchor Learning for Arbitrary-Oriented Object Detection" (AAAI2021).

DAL This project hosts the official implementation for our AAAI 2021 paper: Dynamic Anchor Learning for Arbitrary-Oriented Object Detection [arxiv] [c

ming71 215 Nov 28, 2022