Objective of the repository is to learn and build machine learning models using Pytorch.
List of Algorithms Covered
📌
Day 1 - Linear Regression
📌
Day 2 - Logistic Regression
📌
Day 3 - Decision Tree
📌
Day 4 - KMeans Clustering
📌
Day 5 - Naive Bayes
📌
Day 6 - K Nearest Neighbour (KNN)
📌
Day 7 - Support Vector Machine
📌
Day 8 - Tf-Idf Model
📌
Day 9 - Principal Components Analysis
📌
Day 10 - Lasso and Ridge Regression
📌
Day 11 - Gaussian Mixture Model
📌
Day 12 - Linear Discriminant Analysis
📌
Day 13 - Adaboost Algorithm
📌
Day 14 - DBScan Clustering
📌
Day 15 - Multi-Class LDA
📌
Day 16 - Bayesian Regression
📌
Day 17 - K-Medoids
📌
Day 18 - TSNE
📌
Day 19 - ElasticNet Regression
📌
Day 20 - Spectral Clustering
📌
Day 21 - Latent Dirichlet
📌
Day 22 - Affinity Propagation
📌
Day 23 - Gradient Descent Algorithm
📌
Day 24 - Regularization Techniques
📌
Day 25 - RANSAC Algorithm
📌
Day 26 - Normalizations
📌
Day 27 - Multi-Layer Perceptron
📌
Day 28 - Activations
Let me know if there is any correction. Feedback is welcomed.