Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Related tags

Deep LearningDisAlign
Overview

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

[Paper][Code]

We implement the classification, object detection and instance segmentation tasks based on our cvpods. The users should install cvpods first and run the experiments in this repo.

Changelog

  • 4.23.2021 Update the DisAlign on LVIS v0.5(Mask R-CNN + Res50)
  • 4.12.2021 Update the README

0. How to Use

  • Step-1: Install the latest cvpods.
  • Step-2: cd cvpods
  • Step-3: Prepare dataset for different tasks.
  • Step-4: git clone https://github.com/Megvii-BaseDetection/DisAlign playground_disalign
  • Step-5: Enter one folder and run pods_train --num-gpus 8
  • Step-6: Use pods_test --num-gpus 8 to evaluate the last the checkpoint

1. Image Classification

We support the the following three datasets:

  • ImageNet-LT Dataset
  • iNaturalist-2018 Dataset
  • Place-LT Dataset

We refer the user to CLS_README for more details.

2. Object Detection/Instance Segmentation

We support the two versions of the LVIS dataset:

  • LVIS v0.5
  • LVIS v1.0

Highlight

  1. To speedup the evaluation on LVIS dataset, we provide the C++ optimized evaluation api by modifying the coco_eval(C++) in cvpods.
  • The C++ version lvis_eval API will save ~30% time when calculating the mAP.
  1. We provide support for the metric of AP_fixed and AP_pool proposed in large-vocab-devil
  2. We will support more recent works on long-tail detection in this project(e.g. EQLv2, CenterNet2, etc.) in the future.

We refer the user to DET_README for more details.

3. Semantic Segmentation

We adopt the mmsegmentation as the codebase for runing all experiments of DisAlign. Currently, the user should use DisAlign_Seg for the semantic segmentation experiments. We will add the support for these experiments in cvpods in the future.

Acknowledgement

Thanks for the following projects:

Citing DisAlign

If you are using the DisAlign in your research or with to refer to the baseline results publised in this repo, please use the following BibTex entry.

@inproceedings{zhang2021disalign,
  title={Distribution Alignment: A Unified Framework for Long-tail Visual Recognition.},
  author={Zhang, Songyang and Li, Zeming and Yan, Shipeng and He, Xuming and Sun, Jian},
  booktitle={CVPR},
  year={2021}
}

License

This repo is released under the Apache 2.0 license. Please see the LICENSE file for more information.

Comments
  • scale in cosine classifier

    scale in cosine classifier

    Hi, thanks for your great work! I notice you use the cosine classifier in many experiments and it can get a better baseline. The formula is as follows

    image

    I am wondering the value of s?

    opened by L1aoXingyu 5
  •  Is it correct to freeze the weight and bias of the DisAlign Linear Layer as well?

    Is it correct to freeze the weight and bias of the DisAlign Linear Layer as well?

    Hello. Thank you for your project! I'm testing your code on my custom dataset. My task is classification. I have a question about your code implementation.

    https://github.com/Megvii-BaseDetection/DisAlign/blob/a2fc3500a108cb83e3942293a5675c97ab3a2c6e/classification/imagenetlt/resnext50/resx50.scratch.imagenet_lt.224size.90e.disalign.10e/net.py#L56-L62

    From my understanding, in stage 2, remove the linear layer used in stage 1 and add DisAlign Linear Layer. And freeze all parts except for logit_scale, logit_bias, and confidence_layer. At this time, the weight and bias of DisAlignLinear are also frozen. (self.weight, self.bias) Is my understanding correct?

    If so, are the weight and bias of DisAlignLinearLayer fixed after the initialization? (The weight and bias of the linear layer in stage 1 are not copied either)

    If my understanding is correct, why is the weight of DisAlignLinear also frozen?

    I will wait for your reply. thanks!

    opened by jeongHwarr 4
  • Where is the DisAlignLinear module?

    Where is the DisAlignLinear module?

    Hello. Thank you for your impressive project!

    I want to apply DisAlign to classification. However, an error occurs in the import part. https://github.com/Megvii-BaseDetection/DisAlign/blob/a2fc3500a108cb83e3942293a5675c97ab3a2c6e/classification/imagenetlt/resnext50/resx50.scratch.imagenet_lt.224size.90e.disalign.10e/net.py#L7 I coudn't find the DisAlignLinear in cvpods.layers. and there also isn't exist at https://github.com/Megvii-BaseDetection/cvpods/tree/master/cvpods/layers How can I solve this problem?

    Thank you!

    opened by jeongHwarr 4
  • Can someone kindly share their codes of Classification task on ImageNet_LT?

    Can someone kindly share their codes of Classification task on ImageNet_LT?

    I tried to train the proposed method on ImageNet_LT, but I can only get an average testing rate about 49%, which is far from the rate described in the paper (52.9). Some of the details regarding my implementations are given as follows: (1) The feature extractor is ResNexT-50 and the head classifier is a linear classifier. The testing accuracy in Stage-One is 43.9%, which is OK.

    (2) The testing accuracy of adopting cRT method in Stage-Two is 49.6%, which is identical to one reported in other papers. (3) When fine-tuning the model in Stage-2, both the feature-extractor and head classifier are frozen, and a DisAliLinear model (which is implemented in CVPODs) is retrained. The testing accuracy can only reach 48.8%, which is far away from the one reported in your paper.

    opened by smallcube 4
  • The code for semantic segmentation is missing

    The code for semantic segmentation is missing

    Hi, thank you for the nice work, but the code for semantic segmentation is missing and the URL for it in the README could not be opened. Could you please fix this issue?

    opened by curiosity654 3
  • About the reference Distribution p_r in Eq. (10)

    About the reference Distribution p_r in Eq. (10)

    Hi, Thank you for providing your code. Here I was wondering the Equation (10) in your paper (The definition of p_r), which seems not to be a distribution. Since every x_i can only have one label, the reference distribution p_r(y| x_i) will be the distribution like (0, 0, 0,...,w_c, 0, 0,...,0). And the sum of this distribution is w_c, but not 1.

    Could you help me understand this equation? Thanks in advance.

    opened by Kevinz-code 3
  • import error

    import error

    Hi, thanks for the great work. Maybe I missed it, but it seems that the code for this project has been incorporated into cvpods. I couldn't launch any experiments due to ImportErrors like: from cvpods.layers import DisAlignLinear ImportError: cannot import name 'DisAlignLinear' from 'cvpods.layers' Also, I didn't find the corresponding functions in cvpods.

    Any help will be appreciated. Thanks.

    opened by YUE-FAN 2
  • about the confidence score σ(x)

    about the confidence score σ(x)

    In the paper, the σ(x) is implemented as a linear layer followed by a non-linear activation function (e.g., sigmoid function) for all input x. How to understand the input x?the matrix of raw iamge, or the extracted features, even or cls_score? Thank you!

    opened by lzed2399 2
  • exp_reweight = exp_reweight / np.sum(exp_reweight) * num_foreground

    exp_reweight = exp_reweight / np.sum(exp_reweight) * num_foreground

    Dear author, I have some questions about the code and paper:

    1. exp_reweight = exp_reweight / np.sum(exp_reweight) * num_foreground Why "exp_reweight" is multiplied by the coefficient "num_foreground"? It is not mentioned in the paper.
    2. Is "K" in the empirical class frequencies r = [r1, · · · , rK] on the training set in the paper the same as the class number C of the training set?
    opened by Liu-wanbing 2
  • The DisAlign_Seg page can't open

    The DisAlign_Seg page can't open

    opened by Kittywyk 1
  • Do you use validation dataset?

    Do you use validation dataset?

    https://github.com/Megvii-BaseDetection/DisAlign/blob/main/classification/imagenetlt/resnext50/resx50.scratch.imagenet_lt.224size.90e.disalign.10e/config.py#L31

    It seems that you only use test dataset? What is the reason for that?

    opened by qianlanwyd 1
  • How can I test and augtest the trained semseg DisAlign model?

    How can I test and augtest the trained semseg DisAlign model?

    opened by jh151170 0
  • the code question in semantic_seg

    the code question in semantic_seg

    Hi, I have a questation about the logit_scale and logit_bias in semantic_seg. The shape of the above parameter is (1, num_classes, 1, 1), why not is (1, num_classes, 512, 512) which is matched the input image size for semantic segmenation.

    opened by Ianresearch 8
  • Value of the learned scale and bias vector?

    Value of the learned scale and bias vector?

    Hi, did you check the value change of the learned scale and bias vector throughout the training process? I find the value of them change in the first few iterations and remain stable in the rest time on my own classification dataset. I wonder how the learned vectors look like in your paper? Thanks!

    opened by Jacobew 1
Owner
BaseDetection Team of Megvii
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and

Aryan raj 11 Oct 16, 2022
An updated version of virtual model making

Model-Swap-Face v2   这个项目是基于stylegan2 pSp制作的,比v1版本Model-Swap-Face在推理速度和图像质量上有一定提升。主要的功能是将虚拟模特进行环球不同区域的风格转换,目前转换器提供西欧模特、东亚模特和北非模特三种主流的风格样式,可帮我们实现生产资料零成

seeprettyface.com 62 Dec 09, 2022
particle tracking model, works with the ROMS output file(qck.nc, his.nc)

particle-tracking-model-for-ROMS particle tracking model, works with the ROMS output file(qck.nc, his.nc) description this is a 2-dimensional particle

xusheng 1 Jan 11, 2022
A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art

Benjin Zhu 1.4k Jan 05, 2023
Training BERT with Compute/Time (Academic) Budget

Training BERT with Compute/Time (Academic) Budget This repository contains scripts for pre-training and finetuning BERT-like models with limited time

Intel Labs 263 Jan 07, 2023
Official code base for the poster "On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation" published in NeurIPS 2021 Workshop (SVRHM)

Self-Supervised Learning (SimCLR) with Biological Plausible Image Augmentations Official code base for the poster "On the use of Cortical Magnificatio

Binxu 8 Aug 17, 2022
OcclusionFusion: realtime dynamic 3D reconstruction based on single-view RGB-D

OcclusionFusion (CVPR'2022) Project Page | Paper | Video Overview This repository contains the code for the CVPR 2022 paper OcclusionFusion, where we

Wenbin Lin 193 Dec 15, 2022
CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP

CLIP-GEN [简体中文][English] 本项目在萤火二号集群上用 PyTorch 实现了论文 《CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP》。 CLIP-GEN 是一个 Language-F

75 Dec 29, 2022
Neural Turing Machines (NTM) - PyTorch Implementation

PyTorch Neural Turing Machine (NTM) PyTorch implementation of Neural Turing Machines (NTM). An NTM is a memory augumented neural network (attached to

Guy Zana 519 Dec 21, 2022
You Only Look Once for Panopitic Driving Perception

You Only 👀 Once for Panoptic 🚗 Perception You Only Look at Once for Panoptic driving Perception by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wan

Hust Visual Learning Team 1.4k Jan 04, 2023
Lightweight plotting to the terminal. 4x resolution via Unicode.

Uniplot Lightweight plotting to the terminal. 4x resolution via Unicode. When working with production data science code it can be handy to have plotti

Olav Stetter 203 Dec 29, 2022
Winners of DrivenData's Overhead Geopose Challenge

Winners of DrivenData's Overhead Geopose Challenge

DrivenData 22 Aug 04, 2022
A Pythonic library for Nvidia Codec.

A Pythonic library for Nvidia Codec. The project is still in active development; expect breaking changes. Why another Python library for Nvidia Codec?

Zesen Qian 12 Dec 27, 2022
Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks

Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks Abstract Facial expression recognition in video

Bogireddy Sai Prasanna Teja Reddy 103 Dec 29, 2022
TigerLily: Finding drug interactions in silico with the Graph.

Drug Interaction Prediction with Tigerlily Documentation | Example Notebook | Youtube Video | Project Report Tigerlily is a TigerGraph based system de

Benedek Rozemberczki 91 Dec 30, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
Code repo for realtime multi-person pose estimation in CVPR'17 (Oral)

Realtime Multi-Person Pose Estimation By Zhe Cao, Tomas Simon, Shih-En Wei, Yaser Sheikh. Introduction Code repo for winning 2016 MSCOCO Keypoints Cha

Zhe Cao 4.9k Dec 31, 2022
Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

RegNet Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020. Paper | Official Implementation RegNet offer a very

Vishal R 2 Feb 11, 2022
Classifying cat and dog images using Kaggle dataset

PyTorch Image Classification Classifies an image as containing either a dog or a cat (using Kaggle's public dataset), but could easily be extended to

Robert Coleman 74 Nov 22, 2022