TransMVSNet: Global Context-aware Multi-view Stereo Network with Transformers.

Overview
Comments
  • abs_depth_error

    abs_depth_error

    I find ABS_DEPTH_ERROR is close to 6 or even 7 during training, is this normal? Here are the training results for Epoch 5. Is it because of the slow convergence?

    avg_test_scalars: {'loss': 4.360309665948113, 'depth_loss': 6.535046514014081, 'entropy_loss': 4.360309665948113, 'abs_depth_error': 6.899323051878795, 'thres2mm_error': 0.16829867261163733, 'thres4mm_error': 0.10954744909229193, 'thres8mm_error': 0.07844322964626443, 'thres14mm_error': 0.06323695212957076, 'thres20mm_error': 0.055751020700780536, 'thres2mm_abserror': 0.597563438798779, 'thres4mm_abserror': 2.7356186663791666, 'thres8mm_abserror': 5.608324628466483, 'thres14mm_abserror': 10.510002394554125, 'thres20mm_abserror': 16.67409769420184, 'thres>20mm_abserror': 78.15814284054947}

    opened by zhang-snowy 7
  • About the fusion setting in DTU

    About the fusion setting in DTU

    Thank you for your great contribution. The script use the gipuma as the fusion method with num_consistent=5prob_threshold=0.05disp_threshold=0.25. However, it produces point cloud results with only 1/2 points compared with the point cloud results you provide in DTU, leading to a much poorer result in DTU. Is there any setting wrong in the script? Or because it does not use the dynamic fusion method described in the paper. Could you provide the dynamic fusion process in DTU?

    opened by DIVE128 5
  • Testing on TnT advanced dataset

    Testing on TnT advanced dataset

    Hi, thank you for sharing this great work!

    I'm try to test transmvsnet on tnt advanced dataset, but meet some problem. My test environment is ubuntu16.04 with cuda11.3 and pytorch 1.10.

    The first thing is that there is no cams_1 folder under tnt dataset, is it a revised version of original cams folder or you just changed the folder name?

    I just changed the folder name, then run scripts/test_tnt.sh, but I find the speed is rather slow, about 10 seconds on 1080ti for a image (1056 x 1920), is it normal?

    Finally I get the fused point cloud, but the cloud is meaningless, I checked the depth map and confidence map, all of the data are very strange, apperantly not right.

    Can you help me with these problems?

    opened by CanCanZeng 4
  • Some implement details about the paper

    Some implement details about the paper

    Firstly thanks for your paper and I'm looking forward to your open-sourced code.

    And I have some questions about your paper: (Hopefully you can reply, thanks in advance!) (1) In section 4.2, "The model is trained with Adam for 10 epochs with an initial learning rate of 0.001, which decays by a factor of 0.5 respectively after 6, 8, and 12 epochs." I'm confused about the epochs. And I also noticed that this training strategy is different from CasMVSNet. Did you try the training strategy in CasMVSNet? What's the difference? (2) In Table4(b), focal loss(what is the value of \gamma?) suppresses CE loss by 0.06. However, In Table4(e) and Table 6, we infer that the best model use CE loss(FL with \gamma=0). My question is: did you keep Focal loss \gamma unchanged in the Ablation study in Table4? If not, how \gamma changes? Could you elaborate?

    Really appreciate it!

    opened by JeffWang987 4
  • source code

    source code

    Hi, @Lxiangyue Thank you for the nice paper.

    It's been over a month since authors announced that the code will be available. May I know when the code will be released? (or whether it will not be released)

    opened by Ys-Jung77 3
  • Testing on my own dataset

    Testing on my own dataset

    Hi thanks for your interesting work. I tested your code on one of the DTU dataset (Moda). as you can see from the following image, the results are quite well. image

    but I got a very bad result, when i tried to tested on one of my dataset (see the following pic) using your pretrained model (model_dtu). Now, my question is that do you thing that the object is too complicated and different compared to DTU dataset and it is all we can get from the pretrain model without retraining it? is it possible to improve by changing the input parameters? In general, would you please share your opinion about this result? image

    opened by AliKaramiFBK 1
  • generate dense 3D point cloud

    generate dense 3D point cloud

    thanks for your greate work I just tried to do a test on DTU testing dataset I got the depth map for each view but I got a bit confised on how to generate 3D point cloud using your code would you please let me know Best

    opened by AliKaramiFBK 1
  • GPU memory consumption

    GPU memory consumption

    Hi! Thanks for your excellent work! When I tested on the DTU dataset with pretrained model, the gpu memory consumption is 4439MB, but the paper gives 3778MB.

    I do not know where the problem is.

    opened by JianfeiJ 0
  • Using my own data

    Using my own data

    If I have the intrinsic matrics and extrinsic matrics of cameras, which means I don't need to run SFM in COLMAP, how should I struct my data to train the model?

    opened by PaperDollssss 2
  • TnT dataset results

    TnT dataset results

    Thanks for the great job. I follow the instruction and upload the reconstruction result of tnt but find the F-score=60.29, and I find the point cloud sizes are a larger than the upload ones. Whether the reconstructed point cloud use the param settting of test_tnt.sh or it should be tuned manually? :smile:

    opened by CC9310 1
  • TankAndTemple Test

    TankAndTemple Test

    Hi, 我测试了TAT数据集中的Family,使用的是默认脚本test_tnt.sh,采用normal融合,最近仅得到13MB点云文件。经检查发现生成的mask文件夹中的_geo.png都是大部分区域黑色图片,从而最后得到的 final.png的大部分区域都是无效的。geometric consistency阈值分别是默认的0.01和1。不知道您这边是否有一样的问题?

    opened by lt-xiang 13
  • Why is there a big gap between the reproducing results and the paper results?

    Why is there a big gap between the reproducing results and the paper results?

    I have tried the pre-trained model you offered on DTU dataset. But the results I got are mean_acc=0.299, mean_comp=0.385, overall=0.342, and the results you presented in the paper are mean_acc=0.321, mean_comp=0.289, overall=0.305.

    I do not know where the problem is.

    opened by cainsmile 14
Releases(T&T_ply)
Owner
旷视研究院 3D 组
旷视科技(Face++)研究院 3D 组(原 SLAM 组)
旷视研究院 3D 组
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie

Secure AI Systems Lab 8 Mar 26, 2022
IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to y

CVSM Group - email: <a href=[email protected]"> 84 Dec 12, 2022
PixelPyramids: Exact Inference Models from Lossless Image Pyramids (ICCV 2021)

PixelPyramids: Exact Inference Models from Lossless Image Pyramids This repository contains the PyTorch implementation of the paper PixelPyramids: Exa

Visual Inference Lab @TU Darmstadt 8 Dec 11, 2022
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
PyTorch implementations of neural network models for keyword spotting

Honk: CNNs for Keyword Spotting Honk is a PyTorch reimplementation of Google's TensorFlow convolutional neural networks for keyword spotting, which ac

Castorini 475 Dec 15, 2022
Semantic Bottleneck Scene Generation

SB-GAN Semantic Bottleneck Scene Generation Coupling the high-fidelity generation capabilities of label-conditional image synthesis methods with the f

Samaneh Azadi 41 Nov 28, 2022
DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs

DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs Abstract: Image-to-image translation has recently achieved re

yaxingwang 23 Apr 14, 2022
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023
GMFlow: Learning Optical Flow via Global Matching

GMFlow GMFlow: Learning Optical Flow via Global Matching Authors: Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Dacheng Tao We streamline the

Haofei Xu 298 Jan 04, 2023
Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021

This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation Requirements OS: Ubuntu 16.04 or higher ver

Yujuan Ding 10 Oct 10, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
AdamW optimizer for bfloat16 models in pytorch.

Image source AdamW optimizer for bfloat16 models in pytorch. Bfloat16 is currently an optimal tradeoff between range and relative error for deep netwo

Alex Rogozhnikov 8 Nov 20, 2022
code associated with ACL 2021 DExperts paper

DExperts Hi! This repository contains code for the paper DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-Experts to appear at

Alisa Liu 68 Dec 15, 2022
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Adam Geitgey 46.9k Jan 03, 2023
Old Photo Restoration (Official PyTorch Implementation)

Bringing Old Photo Back to Life (CVPR 2020 oral)

Microsoft 11.3k Dec 30, 2022
Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations"

Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations" this repository is maintained by bo

Yuhan Liu 24 Nov 29, 2022
PyTorch implementation of Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction (ICCV 2021).

Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction Introduction This is official PyTorch implementation of Towards Accurate Alignment

TANG Xiao 96 Dec 27, 2022
A spatial genome aligner for analyzing multiplexed DNA-FISH imaging data.

jie jie is a spatial genome aligner. This package parses true chromatin imaging signal from noise by aligning signals to a reference DNA polymer model

Bojing Jia 9 Sep 29, 2022
Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods."

pv_predict_unet-lstm Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods." IEEE Transactions

FolkScientistInDL 8 Oct 08, 2022
Video Contrastive Learning with Global Context

Video Contrastive Learning with Global Context (VCLR) This is the official PyTorch implementation of our VCLR paper. Install dependencies environments

143 Dec 26, 2022