PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Overview

Hand Biomechanical Constraints Pytorch

Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020).

This project reimplement following components :

  1. 3 kinds of biomechanical soft constraints
  2. integrate BMC into training procedure (PyTorch version)

Usage

  • Retrieve the code
git clone https://github.com/MengHao666/Hand-BMC-pytorch
cd Hand-BMC-pytorch
  • Create and activate the virtual environment with python dependencies
conda env create --file=environment.yml
conda activate bmc

Download data

Download 3D joint location data joints.zip Google Drive or Baidu Pan (2pip), and . These statistics are from following datasets:

Note the data from these datasets under their own licenses.

Calculate BMC

BMC

Run the code

python calculate_bmc.py

You will get

  • bone_len_max.npy bone_len_min.npy for bone length limits
  • curvatures_max.npy curvatures_min.npy for Root bones' curvatures
  • PHI_max.npy PHI_min.npy for Root bones' angular distance
  • joint_angles.npy for Joint angles

And if u want to check the coordinate system, run the code

cd utils
python calculate_joint_angles.py
  • red ,green, blue arrows refer to X,Y,Z of local coordinate system respectively;
  • dark arrows refer to bones;
  • pink arrows refer to bone projection into X-Z plane of local coordinate system;
One view Another view

Run the code

python calculate_convex_hull.py

You will get CONVEX_HULLS.npy, i.e. convex hulls to encircle the anatomically plausible joint angles.

And you will also see every convex hull like following figure:

BMC

  • "Bone PIP" means the bone from MCP joint to PIP joint in thumb
  • flexion and abduction is two kinds of angle describing joint rotation
  • "ori_convex_hull" means the original convex hull calculated from all joint angle points
  • "rdp_convex_hull" means convex hull simplified by the Ramer-Douglas-Peucker algorithm, a polygon simplification algorithm
  • "del_convex_hull" means convex hull further simplified by a greedy algorithm
  • "rectangle" means the minimal rectangle to surround all joint angle points

Run the code

python plot.py

You will see all the convex hulls

BMC

Integrate BMC into training (PyTorch version)

Run the code

python weakloss.py

Experiment results

To check influence of BMC, instead of reimplementing the network of origin paper, I integrate BMC into my own project,

Train and evaluation curve

(AUC means 3D PCK, and ACC_HM means 2D PCK) teaser

3D PCK AUC Diffenence

Dataset DetNet DetNet+BMC
RHD 0.9339 0.9364
STB 0.8744 0.8778
DO 0.9378 0.9475
EO 0.9270 0.9182

Note

  • Adjusting training parameters carefully, longer training time might further boost accuracy.
  • As BMC is a weakly supervised method, it may only make predictions more physically plausible,but cannot boost AUC performance strongly when strong supervision is used.

Limitation

  • Due to time limitation, I didn't reimplement the network and experiments of original paper.
  • There is a little difference between original paper and my reimplementation. But most of them match.

Citation

This is the unofficial pytorch reimplementation of the paper "Weakly supervised 3d hand pose estimation via biomechanical constraints (ECCV 2020).

If you find the project helpful, please star this project and cite them:

@article{spurr2020weakly,
  title={Weakly supervised 3d hand pose estimation via biomechanical constraints},
  author={Spurr, Adrian and Iqbal, Umar and Molchanov, Pavlo and Hilliges, Otmar and Kautz, Jan},
  journal={arXiv preprint arXiv:2003.09282},
  volume={8},
  year={2020},
  publisher={Springer}
}
Owner
Hao Meng
Master student at Beihang University , mainly interested in hand pose estimation.
Hao Meng
TensorFlow port of PyTorch Image Models (timm) - image models with pretrained weights.

TensorFlow-Image-Models Introduction Usage Models Profiling License Introduction TensorfFlow-Image-Models (tfimm) is a collection of image models with

Martins Bruveris 227 Dec 20, 2022
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022
A PyTorch Lightning Callback for pushing models to the Hugging Face Hub 🤗⚡️

hf-hub-lightning A callback for pushing lightning models to the Hugging Face Hub. Note: I made this package for myself, mostly...if folks seem to be i

Nathan Raw 27 Dec 14, 2022
ICCV2021 Papers with Code

ICCV2021 Papers with Code

Amusi 1.4k Jan 02, 2023
A unified framework to jointly model images, text, and human attention traces.

connect-caption-and-trace This repository contains the reference code for our paper Connecting What to Say With Where to Look by Modeling Human Attent

Meta Research 73 Oct 24, 2022
An Implementation of SiameseRPN with Feature Pyramid Networks

SiameseRPN with FPN This project is mainly based on HelloRicky123/Siamese-RPN. What I've done is just add a Feature Pyramid Network method to the orig

3 Apr 16, 2022
Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.

Industrial KNN-based Anomaly Detection ⭐ Now has streamlit support! ⭐ Run $ streamlit run streamlit_app.py This repo aims to reproduce the results of

aventau 102 Dec 26, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
Sample and Computation Redistribution for Efficient Face Detection

Introduction SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv. Performance Precision, flops and infer ti

Sajjad Aemmi 13 Mar 05, 2022
Deep Latent Force Models

Deep Latent Force Models This repository contains a PyTorch implementation of the deep latent force model (DLFM), presented in the paper, Compositiona

Tom McDonald 5 Oct 26, 2022
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models

Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T

Shuangfei Zhai 18 Mar 05, 2022
FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS

FaceAPI AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using

Vladimir Mandic 395 Dec 29, 2022
Script for getting information in discord

User-info.py Script for getting information in https://discord.com/ Instalação: apt-get update -y apt-get upgrade -y apt-get install git pkg install

Moleey 1 Dec 18, 2021
Self-supervised Deep LiDAR Odometry for Robotic Applications

DeLORA: Self-supervised Deep LiDAR Odometry for Robotic Applications Overview Paper: link Video: link ICRA Presentation: link This is the correspondin

Robotic Systems Lab - Legged Robotics at ETH Zürich 181 Dec 29, 2022
OpenCVのGrabCut()を利用したセマンティックセグメンテーション向けアノテーションツール(Annotation tool using GrabCut() of OpenCV. It can be used to create datasets for semantic segmentation.)

[Japanese/English] GrabCut-Annotation-Tool GrabCut-Annotation-Tool.mp4 OpenCVのGrabCut()を利用したアノテーションツールです。 セマンティックセグメンテーション向けのデータセット作成にご使用いただけます。 ※Grab

KazuhitoTakahashi 30 Nov 18, 2022
This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.

Multimodal Deep Learning 🎆 🎆 🎆 Announcing the multimodal deep learning repository that contains implementation of various deep learning-based model

Deep Cognition and Language Research (DeCLaRe) Lab 398 Dec 30, 2022
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Mayur 119 Nov 24, 2022
This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Prediction Graph Neural Network Model for Bike Sharing Systems".

cluster-link-prediction This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Predict

Bárbara 0 Dec 28, 2022
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Astitva Veer Garg 1 Jul 31, 2022