利用python脚本实现微信、支付宝账单的合并,并保存到excel文件实现自动记账,可查看可视化图表。

Overview

KeepAccounts_v2.0

KeepAccounts.exe和其配套表格能够实现微信、支付宝官方导出账单的读取合并,为每笔帐标记类型,并按月份和类型生成可视化图表。再也不用消费一笔记一笔,每月仅需10分钟,记好所有的帐。

作者: MickLife

Bilibili: https://space.bilibili.com/38626658

Github: https://github.com/MickLife/KeepAccounts_v2.0

程序和表格下载链接:https://pan.baidu.com/s/1trgfNS6RuXJwy_NWVSo74Q 提取码:84d3

v2.0更新内容

  1. 利用python脚本编写程序,自动合并微信、支付宝账单,节省了操作时间。
  2. 更新记账分类方法,使记账有助于改善你的消费习惯
  3. 更新Excel明细页和可视化页,增加数据透视表和数据透视图。

如何使用

第一步 下载账单

微信账单

  1. 进入手机版微信,选择 “我”,进入用户中心界面,然后点击 “支付” 选项;
  2. 点击 “钱包”,进入钱包界面后,点击右上角的 “账单” 按钮;
  3. 点击右上角“常见问题”,点击“下载账单”->“用于个人对账”;
  4. 自定义账单时间,然后点击 “下一步”;
  5. 填写要导出的邮箱(微信会把账单发送到你填写的邮箱),点击 “下一步”;
  6. 输入支付密码,提示申请已提交,微信官方会给你发送一条消息,里面有账单的解压码;
  7. 前往你的邮箱下载得到压缩包,用解压码解压得到 .csv 格式微信账单,导出成功。

支付宝账单

  1. 电脑浏览器中打开支付宝官网 https://www.alipay.com/
  2. 点击右上角“客户服务”->“自助服务”;
  3. 在“交易服务”中点击“交易记录”一项;
  4. 扫码登录;
  5. 选择交易时间,并选择下载 excel 格式,得到 .zip 压缩包(其实是 .csv 格式,这是一种更轻便的文本格式);
  6. 解压压缩包得到 .csv 格式的支付宝账单,导出成功。

备注: 商家用户请勿从商家中心导出,否则数据格式不同无法使用本程序导入账单。请按以上步骤或切换至个人版页面导出。

第二步 运行程序合并账单

  1. 将 KeepAccounts_v2.0.zip 解压,推荐解压至 D:\Program Files\;
  2. 运行 KeepAccounts_v2.0 目录下的 KeepAccounts.exe
  3. 根据提示,依次选择微信 csv 账单、支付宝 csv 账单和账本文件(自动记账2.0_源数据.xlsx);
  4. 程序会自动将微信和支付宝账单合并到你选择的账本文件。
  5. 运行成功后按任意键退出。

备注:

  • 程序会将账单中大部分中性支出、收入(如提现、退款)删除。
  • 小部分中性支出、收入会被程序识别,并在逻辑 2 标注 0,乘后金额会显示 0。
  • 由于算法的编写由个人完成,不能做到识别所有情况,如果一些中性支出、收入没能自动识别,请手动在源数据表格中将乘后金额改为 0 即可。

第三步 补充数据、标记类别

  1. 打开“自动记账2.0_源数据.xlsx”;
  2. 打开“明细”sheet页,在最后一行追加其他收入和支出数据(如现金、银行卡、校园卡、余额宝等消费情况);
  3. 在最后两列的下拉列表中选择类别;
  4. 填写时注意,“月份、乘后金额、类别标记1、类别标记2”为必填项,其他可视情况填写。
  5. 追加数据后一定要保存

第四步 查看可视化图表

  1. 打开“自动记账2.0_可视化.xlsx”前,最好不要关闭源数据表格;

  2. 打开“自动记账2.0_可视化.xlsx”;(如果提示各种安全警告和更新链接询问,请点击“允许更新、启用内容”之类的选项)

  3. 如果你是第一次打开这个表格,需要更新数据源连接属性。 更新步骤:

    a. 请选择任意数据透视表中的任意一个单元格,点击“数据透视表工具-分析”选项卡,点击“更新数据源”处的下拉菜单,点击“连接属性”

    b. 在“连接属性”对话框中,点击“定义”选项卡

    c. 点击连接文件路径右侧的“浏览”,定位到表格文件的路径,选择“自动记账2.0_数据源.xlsx”文件,点击确定

    d. 在选择表格的弹窗中选择“明细$”,点击确定;

    e. 点击确定,看到数据自动更新。

  4. 查看可视化图表,退出时记得保存。

备注: 所有数据透视表、数据透视图中的筛选按钮均可点击,可以根据需求自定义。


Q&A

如何自定义消费类型?

  1. 在“自动记账2.0_源数据.xlsx”文件的“消费类型2.0”sheet页修改类别;
  2. 消费类别会同步出现在明细页的下拉列表、可视化的数据透视图和透视表中;
  3. 第二行编辑后需在“公式”选项卡 - “名称管理器”中同步修改,否则二级下拉列表将失效。

备注:

  • 类别名称中勿包含空格、划线、标点符号等特殊字符,会导致bug
  • 如果不清楚背后的原理,请在B2:O12区域内编辑,不要新增行列
  • 请勿修改明细页的数据有效性公式,因为不使用INDIRECT公式改用直接引用会导致bug,下拉列表消失。
  • 如果修改后出现问题,请自行检索关键词,学习有关知识:数据有效性、二级下拉、INDIRECT函数、名称管理器。

打开可视化表格,数据没有更新怎么办?

答:第一次打开这个表格,需要更新数据源连接属性。后续打开时不必每次这样操作。如果你已经更新过连接属性,但数据仍没有更新,请右键数据透视表的任意单元格,点击“更新”。如果这样还是不行,请在数据透视表工具-分析选项卡中,点击刷新下面的小三角,点击“全部刷新”。

追加其他明细内容需要填写所有项吗?

答:“月份、乘后金额、类别标记1、类别标记2”为必填项,其他可视情况填写。

每月导入前需要删除上个月的明细吗?

答:不需要。程序会直接在明细页最后一行后附加新的数据。

第二年可以接着导入吗?

答:不可以,暂时还不支持筛选年份,因为不想增加工作量ㄒ_ㄒ。第二年就把表格copy一份,数据清空当作新表来记录吧!如果你有好的表格设计想法,欢迎私信与我交流呀。

怎么反馈bug或改进意见?

答:欢迎在B站私信 MickLife 反馈,一起携手改变世界!


附:Excel自动记账v1.0链接: 【Mick小课堂3】Excel自动化个人记账方案 表格分享 https://www.bilibili.com/video/BV145411Y7Bj

Joint-task Self-supervised Learning for Temporal Correspondence (NeurIPS 2019)

Joint-task Self-supervised Learning for Temporal Correspondence Project | Paper Overview Joint-task Self-supervised Learning for Temporal Corresponden

Sifei Liu 167 Dec 14, 2022
[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*

CMU Locus Lab 136 Dec 18, 2022
CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection

CLOCs is a novel Camera-LiDAR Object Candidates fusion network. It provides a low-complexity multi-modal fusion framework that improves the performance of single-modality detectors. CLOCs operates on

Su Pang 254 Dec 16, 2022
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style disentanglement in image generation and translation" (ICCV 2021)

DiagonalGAN Official Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Trans

32 Dec 06, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 07, 2023
Identifying Stroke Indicators Using Rough Sets

Identifying Stroke Indicators Using Rough Sets With the spirit of reproducible research, this repository contains all the codes required to produce th

Muhammad Salman Pathan 0 Jun 09, 2022
交互式标注软件,暂定名 iann

iann 交互式标注软件,暂定名iann。 安装 按照官网介绍安装paddle。 安装其他依赖 pip install -r requirements.txt 运行 git clone https://github.com/PaddleCV-SIG/iann/ cd iann python iann

294 Dec 30, 2022
A python interface for training Reinforcement Learning bots to battle on pokemon showdown

The pokemon showdown Python environment A Python interface to create battling pokemon agents. poke-env offers an easy-to-use interface for creating ru

Haris Sahovic 184 Dec 30, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022
Breaching - Breaching privacy in federated learning scenarios for vision and text

Breaching - A Framework for Attacks against Privacy in Federated Learning This P

Jonas Geiping 139 Jan 03, 2023
Dynamic vae - Dynamic VAE algorithm is used for anomaly detection of battery data

Dynamic VAE frame Automatic feature extraction can be achieved by probability di

10 Oct 07, 2022
Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021

ACTOR Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021. Please visit our we

Mathis Petrovich 248 Dec 23, 2022
⚖️🔁🔮🕵️‍♂️🦹🖼️ Code for *Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances* paper.

Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances This repository contains the code for Measuring the Co

Daniel Steinberg 0 Nov 06, 2022
Implementation of the HMAX model of vision in PyTorch

PyTorch implementation of HMAX PyTorch implementation of the HMAX model that closely follows that of the MATLAB implementation of The Laboratory for C

Marijn van Vliet 52 Oct 13, 2022
Code for the submitted paper Surrogate-based cross-correlation for particle image velocimetry

Surrogate-based cross-correlation (SBCC) This repository contains code for the submitted paper Surrogate-based cross-correlation for particle image ve

5 Jun 30, 2022
This is the pytorch implementation of the paper - Axiomatic Attribution for Deep Networks.

Integrated Gradients This is the pytorch implementation of "Axiomatic Attribution for Deep Networks". The original tensorflow version could be found h

Tianhong Dai 150 Dec 23, 2022
URIE: Universal Image Enhancementfor Visual Recognition in the Wild

URIE: Universal Image Enhancementfor Visual Recognition in the Wild This is the implementation of the paper "URIE: Universal Image Enhancement for Vis

Taeyoung Son 43 Sep 12, 2022