Simple Baselines for Human Pose Estimation and Tracking

Overview

Simple Baselines for Human Pose Estimation and Tracking

News

Introduction

This is an official pytorch implementation of Simple Baselines for Human Pose Estimation and Tracking. This work provides baseline methods that are surprisingly simple and effective, thus helpful for inspiring and evaluating new ideas for the field. State-of-the-art results are achieved on challenging benchmarks. On COCO keypoints valid dataset, our best single model achieves 74.3 of mAP. You can reproduce our results using this repo. All models are provided for research purpose.

Main Results

Results on MPII val

Arch Head Shoulder Elbow Wrist Hip Knee Ankle Mean [email protected]
256x256_pose_resnet_50_d256d256d256 96.351 95.329 88.989 83.176 88.420 83.960 79.594 88.532 33.911
384x384_pose_resnet_50_d256d256d256 96.658 95.754 89.790 84.614 88.523 84.666 79.287 89.066 38.046
256x256_pose_resnet_101_d256d256d256 96.862 95.873 89.518 84.376 88.437 84.486 80.703 89.131 34.020
384x384_pose_resnet_101_d256d256d256 96.965 95.907 90.268 85.780 89.597 85.935 82.098 90.003 38.860
256x256_pose_resnet_152_d256d256d256 97.033 95.941 90.046 84.976 89.164 85.311 81.271 89.620 35.025
384x384_pose_resnet_152_d256d256d256 96.794 95.618 90.080 86.225 89.700 86.862 82.853 90.200 39.433

Note:

  • Flip test is used.

Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset

Arch AP Ap .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)
256x192_pose_resnet_50_d256d256d256 0.704 0.886 0.783 0.671 0.772 0.763 0.929 0.834 0.721 0.824
384x288_pose_resnet_50_d256d256d256 0.722 0.893 0.789 0.681 0.797 0.776 0.932 0.838 0.728 0.846
256x192_pose_resnet_101_d256d256d256 0.714 0.893 0.793 0.681 0.781 0.771 0.934 0.840 0.730 0.832
384x288_pose_resnet_101_d256d256d256 0.736 0.896 0.803 0.699 0.811 0.791 0.936 0.851 0.745 0.858
256x192_pose_resnet_152_d256d256d256 0.720 0.893 0.798 0.687 0.789 0.778 0.934 0.846 0.736 0.839
384x288_pose_resnet_152_d256d256d256 0.743 0.896 0.811 0.705 0.816 0.797 0.937 0.858 0.751 0.863

Results on Caffe-style ResNet

Arch AP Ap .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)
256x192_pose_resnet_50_caffe_d256d256d256 0.704 0.914 0.782 0.677 0.744 0.735 0.921 0.805 0.704 0.783
256x192_pose_resnet_101_caffe_d256d256d256 0.720 0.915 0.803 0.693 0.764 0.753 0.928 0.821 0.720 0.802
256x192_pose_resnet_152_caffe_d256d256d256 0.728 0.925 0.804 0.702 0.766 0.760 0.931 0.828 0.729 0.806

Note:

  • Flip test is used.
  • Person detector has person AP of 56.4 on COCO val2017 dataset.
  • Difference between PyTorch-style and Caffe-style ResNet is the position of stride=2 convolution

Environment

The code is developed using python 3.6 on Ubuntu 16.04. NVIDIA GPUs are needed. The code is developed and tested using 4 NVIDIA P100 GPU cards. Other platforms or GPU cards are not fully tested.

Quick start

Installation

  1. Install pytorch >= v0.4.0 following official instruction.

  2. Disable cudnn for batch_norm:

    # PYTORCH=/path/to/pytorch
    # for pytorch v0.4.0
    sed -i "1194s/torch\.backends\.cudnn\.enabled/False/g" ${PYTORCH}/torch/nn/functional.py
    # for pytorch v0.4.1
    sed -i "1254s/torch\.backends\.cudnn\.enabled/False/g" ${PYTORCH}/torch/nn/functional.py
    

    Note that instructions like # PYTORCH=/path/to/pytorch indicate that you should pick a path where you'd like to have pytorch installed and then set an environment variable (PYTORCH in this case) accordingly.

  3. Clone this repo, and we'll call the directory that you cloned as ${POSE_ROOT}.

  4. Install dependencies:

    pip install -r requirements.txt
    
  5. Make libs:

    cd ${POSE_ROOT}/lib
    make
    
  6. Install COCOAPI:

    # COCOAPI=/path/to/clone/cocoapi
    git clone https://github.com/cocodataset/cocoapi.git $COCOAPI
    cd $COCOAPI/PythonAPI
    # Install into global site-packages
    make install
    # Alternatively, if you do not have permissions or prefer
    # not to install the COCO API into global site-packages
    python3 setup.py install --user
    

    Note that instructions like # COCOAPI=/path/to/install/cocoapi indicate that you should pick a path where you'd like to have the software cloned and then set an environment variable (COCOAPI in this case) accordingly.

  7. Download pytorch imagenet pretrained models from pytorch model zoo and caffe-style pretrained models from GoogleDrive.

  8. Download mpii and coco pretrained models from OneDrive or GoogleDrive. Please download them under ${POSE_ROOT}/models/pytorch, and make them look like this:

    ${POSE_ROOT}
     `-- models
         `-- pytorch
             |-- imagenet
             |   |-- resnet50-19c8e357.pth
             |   |-- resnet50-caffe.pth.tar
             |   |-- resnet101-5d3b4d8f.pth
             |   |-- resnet101-caffe.pth.tar
             |   |-- resnet152-b121ed2d.pth
             |   `-- resnet152-caffe.pth.tar
             |-- pose_coco
             |   |-- pose_resnet_101_256x192.pth.tar
             |   |-- pose_resnet_101_384x288.pth.tar
             |   |-- pose_resnet_152_256x192.pth.tar
             |   |-- pose_resnet_152_384x288.pth.tar
             |   |-- pose_resnet_50_256x192.pth.tar
             |   `-- pose_resnet_50_384x288.pth.tar
             `-- pose_mpii
                 |-- pose_resnet_101_256x256.pth.tar
                 |-- pose_resnet_101_384x384.pth.tar
                 |-- pose_resnet_152_256x256.pth.tar
                 |-- pose_resnet_152_384x384.pth.tar
                 |-- pose_resnet_50_256x256.pth.tar
                 `-- pose_resnet_50_384x384.pth.tar
    
    
  9. Init output(training model output directory) and log(tensorboard log directory) directory:

    mkdir output 
    mkdir log
    

    Your directory tree should look like this:

    ${POSE_ROOT}
    ├── data
    ├── experiments
    ├── lib
    ├── log
    ├── models
    ├── output
    ├── pose_estimation
    ├── README.md
    └── requirements.txt
    

Data preparation

For MPII data, please download from MPII Human Pose Dataset. The original annotation files are in matlab format. We have converted them into json format, you also need to download them from OneDrive or GoogleDrive. Extract them under {POSE_ROOT}/data, and make them look like this:

${POSE_ROOT}
|-- data
`-- |-- mpii
    `-- |-- annot
        |   |-- gt_valid.mat
        |   |-- test.json
        |   |-- train.json
        |   |-- trainval.json
        |   `-- valid.json
        `-- images
            |-- 000001163.jpg
            |-- 000003072.jpg

For COCO data, please download from COCO download, 2017 Train/Val is needed for COCO keypoints training and validation. We also provide person detection result of COCO val2017 to reproduce our multi-person pose estimation results. Please download from OneDrive or GoogleDrive. Download and extract them under {POSE_ROOT}/data, and make them look like this:

${POSE_ROOT}
|-- data
`-- |-- coco
    `-- |-- annotations
        |   |-- person_keypoints_train2017.json
        |   `-- person_keypoints_val2017.json
        |-- person_detection_results
        |   |-- COCO_val2017_detections_AP_H_56_person.json
        `-- images
            |-- train2017
            |   |-- 000000000009.jpg
            |   |-- 000000000025.jpg
            |   |-- 000000000030.jpg
            |   |-- ... 
            `-- val2017
                |-- 000000000139.jpg
                |-- 000000000285.jpg
                |-- 000000000632.jpg
                |-- ... 

Valid on MPII using pretrained models

python pose_estimation/valid.py \
    --cfg experiments/mpii/resnet50/256x256_d256x3_adam_lr1e-3.yaml \
    --flip-test \
    --model-file models/pytorch/pose_mpii/pose_resnet_50_256x256.pth.tar

Training on MPII

python pose_estimation/train.py \
    --cfg experiments/mpii/resnet50/256x256_d256x3_adam_lr1e-3.yaml

Valid on COCO val2017 using pretrained models

python pose_estimation/valid.py \
    --cfg experiments/coco/resnet50/256x192_d256x3_adam_lr1e-3.yaml \
    --flip-test \
    --model-file models/pytorch/pose_coco/pose_resnet_50_256x192.pth.tar

Training on COCO train2017

python pose_estimation/train.py \
    --cfg experiments/coco/resnet50/256x192_d256x3_adam_lr1e-3.yaml

Other Implementations

Citation

If you use our code or models in your research, please cite with:

@inproceedings{xiao2018simple,
    author={Xiao, Bin and Wu, Haiping and Wei, Yichen},
    title={Simple Baselines for Human Pose Estimation and Tracking},
    booktitle = {European Conference on Computer Vision (ECCV)},
    year = {2018}
}
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Barlow Twins and HSIC

Barlow Twins and HSIC Unofficial Pytorch implementation for Barlow Twins and HSIC_SSL on small datasets (CIFAR10, STL10, and Tiny ImageNet). Correspon

Yao-Hung Hubert Tsai 49 Nov 24, 2022
Some methods for comparing network representations in deep learning and neuroscience.

Generalized Shape Metrics on Neural Representations In neuroscience and in deep learning, quantifying the (dis)similarity of neural representations ac

Alex Williams 45 Dec 27, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
Official implementation of Unfolded Deep Kernel Estimation for Blind Image Super-resolution.

Unfolded Deep Kernel Estimation for Blind Image Super-resolution Hongyi Zheng, Hongwei Yong, Lei Zhang, "Unfolded Deep Kernel Estimation for Blind Ima

Z80 15 Dec 26, 2022
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time

DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time Introduction This is official implementation for DR-GAN (IEEE TCS

Kang Liao 18 Dec 23, 2022
Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

RaScaNet: Learning Tiny Models by Raster-Scanning Images Deploying deep convolutional neural networks on ultra-low power systems is challenging, becau

SAIT (Samsung Advanced Institute of Technology) 5 Dec 26, 2022
Style-based Neural Drum Synthesis with GAN inversion

Style-based Drum Synthesis with GAN Inversion Demo TensorFlow implementation of a style-based version of the adversarial drum synth (ADS) from the pap

Sound and Music Analysis (SoMA) Group 29 Nov 19, 2022
Fuzzing the Kernel Using Unicornafl and AFL++

Unicorefuzz Fuzzing the Kernel using UnicornAFL and AFL++. For details, skim through the WOOT paper or watch this talk at CCCamp19. Is it any good? ye

Security in Telecommunications 283 Dec 26, 2022
We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will make a program to Crack Any Password Using Python. Show some ❤️ by starring this repository!

Crack Any Password Using Python We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will

Ananya Chatterjee 11 Dec 03, 2022
A booklet on machine learning systems design with exercises

Machine Learning Systems Design Read this booklet here. This booklet covers four main steps of designing a machine learning system: Project setup Data

Chip Huyen 7.6k Jan 08, 2023
DeepAL: Deep Active Learning in Python

DeepAL: Deep Active Learning in Python Python implementations of the following active learning algorithms: Random Sampling Least Confidence [1] Margin

Kuan-Hao Huang 583 Jan 03, 2023
Fight Recognition from Still Images in the Wild @ WACVW2022, Real-world Surveillance Workshop

Fight Detection from Still Images in the Wild Detecting fights from still images is an important task required to limit the distribution of social med

Şeymanur Aktı 10 Nov 09, 2022
Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility ICCV2021

Vis2Mesh This is the offical repository of the paper: Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Lear

71 Dec 25, 2022
Finetune alexnet with tensorflow - Code for finetuning AlexNet in TensorFlow >= 1.2rc0

Finetune AlexNet with Tensorflow Update 15.06.2016 I revised the entire code base to work with the new input pipeline coming with TensorFlow = versio

Frederik Kratzert 766 Jan 04, 2023
Code and model benchmarks for "SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology"

NeurIPS 2020 SEVIR Code for paper: SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology Requirement

USAF - MIT Artificial Intelligence Accelerator 46 Dec 15, 2022
LIAO Shuiying 6 Dec 01, 2022
Official Chainer implementation of GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral)

GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral) [Project] [Paper] [Demo] [Related Work: A2RL (for Auto Image Cropping)] [C

Wu Huikai 402 Dec 27, 2022
Baseline of DCASE 2020 task 4

Couple Learning for SED This repository provides the data and source code for sound event detection (SED) task. The improvement of the Couple Learning

21 Oct 18, 2022
Dashboard for the COVID19 spread

COVID-19 Data Explorer App A streamlit Dashboard for the COVID-19 spread. The app is live at: [https://covid19.cwerner.ai]. New data is queried from G

Christian Werner 22 Sep 29, 2022