Train emoji embeddings based on emoji descriptions.

Overview

emoji2vec

This is my attempt to train, visualize and evaluate emoji embeddings as presented by Ben Eisner, Tim Rocktรคschel, Isabelle Augenstein, Matko Boลกnjak, and Sebastian Riedel in their paper [1]. Most of their results are used here to build an equivalently robust model in Keras, including the rather simple training process which is solely based on emoji descriptions, but instead of using word2vec (as it was originally proposed) this version uses global vectors [2].

Overview

  • src/ contains the code used to process the emoji descriptions as well as training and evaluating the emoji embeddings
  • res/ contains the positive and negative samples used to train the emoji embeddings (originated here) as well as a list of emoji frequencies; it should also contain the global vectors in a directory called glove/ (for practical reasons they are not included in the repository, but downloading instructions are provided below)
  • models/ contains some pretrained emoji2vec models
  • plots/ contains some visualizations for the obtained emoji embeddings

Dependencies

The code included in this repository has been tested to work with Python 3.5 on an Ubuntu 16.04 machine, using Keras 2.0.8 with Tensorflow as the backend.

List of requirements

Implementation notes

Following Eisner's paper [1], training is based on 6088 descriptions of 1661 distinct emojis. Since all descriptions are valid, we randomly sample negative instances so that there is one positive example per negative example. This approach proved to produce the best results, as stated in the paper.

There are two architectures on which emoji vectors have been trained:

  • one based on the sum of the individual word vectors of the emoji descriptions (taken from the paper)

emoji2vec

  • the other feeds the actual pretrained word embeddings to an LSTM layer (this is my own addition which can be used by setting use_lstm=True i.e -l=True)

emoji2vec_lstm

Not like in the referenced paper, we used global vectors which need to be downloaded and placed in the res/glove directory. You can either download them from the original GloVe page or you can run these bash commands:

! wget -q http://nlp.stanford.edu/data/glove.6B.zip
! unzip -q -o glove.6B.zip

Arguments

All the hyperparameters can be easily changed through a command line interface as described below:

  • -d: embedding dimension for both the global vectors and the emoji vectors (default 300)
  • -b: batch size (default 8)
  • -e: number of epochs (default 80, but we always perform early-stopping)
  • -dr: dropout rate (default 0.3)
  • -lr: learning rate (default 0.001, but we also have a callback to reduce learning rate on plateau)
  • -u: number of hidden units in the dense layer (default 600)
  • -l: boolean to set or not the LSTM architecture (default is False)
  • -s: maximum sequence length (needed only if use_lstm=True, default 10, but the actual, calculated maximum length is 27 so a post-truncation or post-padding is applied to the word sequences)

Training your own emoji2vec

To train your own emoji embeddings, run python3 emoji2vec.py and use the arguments described above to tune your hyperparameters.

Here is an example that will train 300-dimensional emoji vectors using the LSTM-based architecture with a maximum sequence length of 20, batch size of 8, 40 epochs, a dropout of 0.5, a learning rate of 0.0001 and 300 dense units:

python3 emoji2vec.py -d=300 -b=8 -e=40 -dr=0.5 -lr=0.0001 -u=300 -l=True -s=20 

The script given above will create and save several files:

  • in models/ it will save the weights of the model (.h5 format), a .txt file containing the trained embeddings and a .csv file with the x, y emoji coordinates that will be used to produce a 2D visualization of the emoji2vec vector space
  • in plots/ it will save two plots of the historical accuracy and loss reached while training as well as a 2D plot of the emoji vector space
  • it will also perform an analogy-task to evaluate the meaning behind the trained vectorized emojis (printed on the standard output)

Using the pre-trained models

Pretrained emoji embeddings are available for download and usage. There are 100 and 300 dimensional embeddings available in this repository, but any dimension can be trained manually (you need to provide word embeddings of the same dimension, though). The complete emoji2vec weights, visualizations and embeddings (for different dimensions and performed on both architectures) are available for download at this link.

For the pre-trained embeddings provided in this repository (trained on the originally proposed architecture), the following hyperparameter settings have been made (respecting, in large terms, the original authors' decisions):

  • dim: 100 or 300
  • batch: 8
  • epochs: 80 (usually, early stopping around the 30-40 epochs)
  • dense_units: 600
  • dropout: 0.0
  • learning_rate: 0.001
  • use_lstm: False

For the LSTM-based pre-trained embeddings provided in the download link, the following hyperparameter settings have been made:

  • dim: 50, 100, 200 or 300
  • batch: 8
  • epochs: 80 (usually, early stopping around the 40-50 epochs)
  • dense_units: 600
  • dropout: 0.3
  • learning_rate: 0.0001
  • use_lstm: True
  • seq_length: 10

Example code for how to use emoji embeddings, after downloading them and setting up their dimension (embedding_dim):

from utils import load_vectors

embeddings_filename = "/models/emoji_embeddings_%dd.txt" % embedding_dim
emoji2vec = utils.load_vectors(filename=embeddings_filename)

# Get the embedding vector of length embedding_dim for the dog emoji
dog_vector = emoji2vec['๐Ÿ•']

Visualization

A nice visualization of the emoji embeddings has been obtained by using t-SNE to project from N-dimensions into 2-dimensions. For practical purposes, only a fraction of the available emojis has been projected (the most frequent ones, extracted according to emoji_frequencies.txt).

Here, the top 200 most popular emojis have been projected in a 2D space:

emoji2vec_vis

Making emoji analogies

The trained emoji embeddings are evaluated on an analogy task, in a similar manner as word embeddings. Because these analogies are broadly interpreted as similarities between pairs of emojis, the embeddings are useful and extendible to other tasks if they can capture meaningful linear relationships between emojis directly from the vector space [1].

According to ACL's wiki page, a proportional analogy holds between two word pairs: a-a* :: b-b* (a is to a* as b is to b*). For example, Tokyo is to Japan as Paris is to France and a king is to a man as a queen is to a woman.

Therefore, in the current analogy task, we aim to find the 5 most suitable emojis to solve a - b + c = ? by measuring the cosine distance between the trained emoji vectors.

Here are some of the analogies obtained:

๐Ÿ‘‘ - ๐Ÿšน + ๐Ÿšบ = [' ๐Ÿ‘ธ ', ' ๐Ÿ‡ฎ๐Ÿ‡ฑ ', ' ๐Ÿ‘ฌ ', ' โ™‹ ', ' ๐Ÿ’Š ']

๐Ÿ’ต - ๐Ÿ‡บ๐Ÿ‡ธ + ๐Ÿ‡ช๐Ÿ‡บ = [' ๐Ÿ‡ฆ๐Ÿ‡ด ', ' ๐Ÿ‡ธ๐Ÿ‡ฝ ', ' ๐Ÿ‡ฎ๐Ÿ‡ช ', ' ๐Ÿ‡ญ๐Ÿ‡น ', ' ๐Ÿ‡ฐ๐Ÿ‡พ ']

๐Ÿ•ถ - โ˜€ + โ›ˆ = [' ๐Ÿ‘ž ', ' ๐Ÿ  ', ' ๐Ÿ– ', ' ๐Ÿ•’ ', ' ๐ŸŽ ']

โ˜‚ - โ›ˆ + โ˜€ = [' ๐ŸŒซ ', '๐Ÿ’…๐Ÿพ', ' ๐ŸŽ ', ' ๐Ÿ“› ', ' ๐Ÿ‡ง๐Ÿ‡ฟ ']

๐Ÿ… - ๐Ÿˆ + ๐Ÿ• = [' ๐Ÿ˜ฟ ', ' ๐Ÿ ', ' ๐Ÿ‘ฉ ', ' ๐Ÿฅ ', ' ๐Ÿˆ ']

๐ŸŒƒ - ๐ŸŒ™ + ๐ŸŒž = [' ๐ŸŒš ', ' ๐ŸŒ— ', ' ๐Ÿ˜˜ ', '๐Ÿ‘ถ๐Ÿผ', ' โ˜น ']

๐Ÿ˜ด - ๐Ÿ›Œ + ๐Ÿƒ = [' ๐ŸŒž ', ' ๐Ÿ’ ', ' ๐ŸŒ ', ' โ˜ฃ ', ' ๐Ÿ˜š ']

๐Ÿฃ - ๐Ÿฏ + ๐Ÿฐ = [' ๐Ÿ’ฑ ', '๐Ÿ‘๐Ÿฝ', ' ๐Ÿ‡ง๐Ÿ‡ท ', ' ๐Ÿ”Œ ', ' ๐Ÿ„ ']

๐Ÿ’‰ - ๐Ÿฅ + ๐Ÿฆ = ['๐Ÿ’‡๐Ÿผ', ' โœ ', ' ๐ŸŽข ', ' ๐Ÿ“ฒ ', ' โ˜ช ']

๐Ÿ’Š - ๐Ÿฅ + ๐Ÿฆ = [' ๐Ÿ“ป ', ' ๐Ÿ˜ ', ' ๐ŸšŒ ', ' ๐Ÿˆบ ', '๐Ÿ‡ผ']

๐Ÿ˜€ - ๐Ÿ’ฐ + ๐Ÿค‘ = ['๐Ÿšต๐Ÿผ', ' ๐Ÿ‡น๐Ÿ‡ฒ ', ' ๐ŸŒ ', ' ๐ŸŒ ', ' ๐ŸŽฏ ']

License

The source code and all my pretrained models are licensed under the MIT license.

References

[1] Ben Eisner, Tim Rocktรคschel, Isabelle Augenstein, Matko Boลกnjak, and Sebastian Riedel. โ€œemoji2vec: Learning Emoji Representations from their Description,โ€ in Proceedings of the 4th International Workshop on Natural Language Processing for Social Media at EMNLP 2016 (SocialNLP at EMNLP 2016), November 2016.

[2] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. "GloVe: Global Vectors for Word Representation," in Proceedings of the 2014 Conference on Empirical Methods In Natural Language Processing (EMNLP 2014), October 2014.

Owner
Miruna Pislar
Miruna Pislar
TensorFlow 2 implementation of the Yahoo Open-NSFW model

TensorFlow 2 implementation of the Yahoo Open-NSFW model

Bosco Yung 101 Jan 01, 2023
BlueFog Tutorials

BlueFog Tutorials Welcome to the BlueFog tutorials! In this repository, we've put together a collection of awesome Jupyter notebooks. These notebooks

4 Oct 27, 2021
Trajectory Variational Autoencder baseline for Multi-Agent Behavior challenge 2022

MABe_2022_TVAE: a Trajectory Variational Autoencoder baseline for the 2022 Multi-Agent Behavior challenge This repository contains jupyter notebooks t

Andrew Ulmer 15 Nov 08, 2022
Code for "Learning Graph Cellular Automata"

Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro

Daniele Grattarola 37 Oct 26, 2022
Speech-Emotion-Analyzer - The neural network model is capable of detecting five different male/female emotions from audio speeches. (Deep Learning, NLP, Python)

Speech Emotion Analyzer The idea behind creating this project was to build a machine learning model that could detect emotions from the speech we have

Mitesh Puthran 965 Dec 24, 2022
Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

SemanticGAN This is the official code for: Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalizat

151 Dec 28, 2022
๐Ÿฆ™ LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

๐Ÿฆ™ LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

Advanced Image Manipulation Lab @ Samsung AI Center Moscow 4.7k Dec 31, 2022
PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer

SimTrans-Weak-Shot-Classification This repository contains the official PyTorch implementation of the following paper: Weak-shot Fine-grained Classifi

BCMI 60 Dec 02, 2022
Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss ๏ผˆATVGnet๏ผ‰

Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss ๏ผˆATVGnet๏ผ‰ By Lele Chen , Ross K Maddox, Zhiyao Duan, Chenliang Xu. Unive

Lele Chen 218 Dec 27, 2022
Over-the-Air Ensemble Inference with Model Privacy

Over-the-Air Ensemble Inference with Model Privacy This repository contains simulations for our private ensemble inference method. Installation Instal

Selim Firat Yilmaz 1 Jun 29, 2022
Differentiable Neural Computers, Sparse Access Memory and Sparse Differentiable Neural Computers, for Pytorch

Differentiable Neural Computers and family, for Pytorch Includes: Differentiable Neural Computers (DNC) Sparse Access Memory (SAM) Sparse Differentiab

ixaxaar 302 Dec 14, 2022
DiSECt: Differentiable Simulator for Robotic Cutting

DiSECt: Differentiable Simulator for Robotic Cutting Website | Paper | Dataset | Video | Blog post DiSECt is a simulator for the cutting of deformable

NVIDIA Research Projects 73 Oct 29, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework

neon_course This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework. For more information, see

Nervana 92 Jan 03, 2023
A library for implementing Decentralized Graph Neural Network algorithms.

decentralized-gnn A package for implementing and simulating decentralized Graph Neural Network algorithms for classification of peer-to-peer nodes. De

Multimedia Knowledge and Social Analytics Lab 5 Nov 07, 2022
The Video-based Accident Detection System built in Python

Accident-detection-system About the Project This Repository contains the Video-based Accident Detection System built in Python. Contributors Yukta Gop

SURYAVANSHI SNEHAL BALKRISHNA 50 Dec 07, 2022
Code accompanying the paper Shared Independent Component Analysis for Multi-subject Neuroimaging

ShICA Code accompanying the paper Shared Independent Component Analysis for Multi-subject Neuroimaging Install Move into the ShICA directory cd ShICA

8 Nov 07, 2022
PyTorch implementation HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections

HoroPCA This code is the official PyTorch implementation of the ICML 2021 paper: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projec

HazyResearch 52 Nov 14, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
Gluon CV Toolkit

Gluon CV Toolkit | Installation | Documentation | Tutorials | GluonCV provides implementations of the state-of-the-art (SOTA) deep learning models in

Distributed (Deep) Machine Learning Community 5.4k Jan 06, 2023