The project was to detect traffic signs, based on the Megengine framework.

Overview

trafficsign

赛题

旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。
本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。

框架

megengine

算法方案

  • 网络框架

    • atss + resnext101_32x8d
  • 训练阶段

    • 图片尺寸
      最终提交版本输入图片尺寸为(1500,2100)

    • 多尺度训练(最终提交版本未采用)
      起初我们将短边设为(1024, 1056, 1088, 1120, 1152, 1184, 1216, 1248, 1280, 1312, 1344, 1376, 1408),随机选取短边后,长边按比例缩放,并使长边长度小于1800,从而进行多尺度训练,取得了很好的效果。 不过后期的mosaic和mixup在增强时对图片进行了缩放,实则隐含了多尺度训练,且效果优于上述方法,所以我们最终去掉了多尺度训练。

    • 数据增强

      • mosaic增强

        随机选择四张图片,对图片进行随机平移10%,尺度缩放(0.5,2.0),shear 0.1,最后将四张图片进行组合。

      • mixup增强

        随机选取两张图进行叠加,我们最终选用的比例是0.5 * 原图+0.5 * 新图片,同时其进行缩放(0.5,2.0)。

        下图为mosaic+mixup示例图:

        mosaic+mixup

      • 随机水平翻转

        直接对图片进行翻转,会导致第三个类别“arr_l”(左转线)和右转线混淆,故我们添加了class-aware的翻转,遇到有“arr_l”类的图片则不进行翻转。

      • 基于Albumentations库的各种增强(最终提交版本未采用)

        我们尝试了ShiftScaleRotate(验证集+0.5)、CLANE(验证集+1.0)、RandomBrightnessContrast等,但组合起来测试集提点欠佳,所以最后没用。

      • gridmask增强(最终提交版本未采用)

        生成一个和原图相同分辨率的mask(每个grid上全为0或全为1),然后将该mask与原图相乘得到一个图像。提点欠佳,所以没采用。

      • 类别平衡采样(最终提交版本未采用)

        使用类别平衡采样后,效果不是很好,这可能是因为数据集本身没有严重的类别不均衡。下面是我们统计的每个类别在图片中出现的频率。

        红灯 直行线 左转线 禁止行驶 禁止停车
        频率 0.356 0.228 0.201 0.257 0.485
  • 多尺度测试

    • 多尺度测试图片尺寸

      最后提交版本(2100,2700),(2100,2800),(2400,3200),如果继续增加尺度,map还会继续提高。

    • topk—nms

      对上述三个尺度生成的结果先进行nms,再将得到的结果框与剩下所有框进行topk—nms(保留与当前结果框iou大于0.85的topk的框,把这些框的坐标进行融合),参数设置vote_thresh=0.85, k=5。

  • 网络结构

    • 加上增强后,backbone从res50到res101再到resx101有稳定涨点。

    • 我们还在backbone部分尝试了dcn和gcnet,验证集收效甚微,最终没有采用。

模型训练与测试

  • 数据集位置
/path/to/ 
    |->traffic   
    |    |images     
    |    |annotations->|train.json     
    |    |             |val.json     
    |    |             |test.json      
  • 训练测试

在加上增强后,我们训练了36个epoch。

pip3 install --user -r requirements.txt

export PYTHONPATH=your_path/trafficsign:$PYTHONPATH

cd weights && wget https://data.megengine.org.cn/models/weights/atss_resx101_coco_2x_800size_45dot6_b3a91b36.pkl

python3 tools/train.py -n 4 -b 2 -f configs/atss_resx101_final.py -d your_datasetpath -w weights/atss_resx101_coco_2x_800size_45dot6_b3a91b36.pkl

python3 tools/test_final.py -n 4 -se 35 -f configs/atss_resx101_final.py -d your_datasetpath 

(-n 能抢到几张卡就写几吧qaq)

备注

以上提到的所有方法,无论最终是否采用,代码中均有实现。

感谢

https://github.com/MegEngine/Models/tree/master/official/vision/detection

https://github.com/MegEngine/YOLOX

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Mayur 119 Nov 24, 2022
This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022
这是一个facenet-pytorch的库,可以用于训练自己的人脸识别模型。

Facenet:人脸识别模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 预测步骤 How2predict 训练步骤 How2train 参考资料 Reference 性能情况 训练数据

Bubbliiiing 210 Jan 06, 2023
FluidNet re-written with ATen tensor lib

fluidnet_cxx: Accelerating Fluid Simulation with Convolutional Neural Networks. A PyTorch/ATen Implementation. This repository is based on the paper,

JoliBrain 50 Jun 07, 2022
ML for NLP and Computer Vision.

Sparrow is our open-source ML product. It runs on Skipper MLOps infrastructure.

Katana ML 2 Nov 28, 2021
NeuralForecast is a Python library for time series forecasting with deep learning models

NeuralForecast is a Python library for time series forecasting with deep learning models. It includes benchmark datasets, data-loading utilities, evaluation functions, statistical tests, univariate m

Nixtla 1.1k Jan 03, 2023
Material related to the Principles of Cloud Computing course.

CloudComputingCourse Material related to the Principles of Cloud Computing course. This repository comprises material that I use to teach my Principle

Aniruddha Gokhale 15 Dec 02, 2022
This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by Divam Gupta, Wei Pu, Trenton Tabor, Jeff Schneider

SBEVNet: End-to-End Deep Stereo Layout Estimation This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by D

Divam Gupta 19 Dec 17, 2022
Motion planning algorithms commonly used on autonomous vehicles. (path planning + path tracking)

Overview This repository implemented some common motion planners used on autonomous vehicles, including Hybrid A* Planner Frenet Optimal Trajectory Hi

Huiming Zhou 1k Jan 09, 2023
Prototype-based Incremental Few-Shot Semantic Segmentation

Prototype-based Incremental Few-Shot Semantic Segmentation Fabio Cermelli, Massimiliano Mancini, Yongqin Xian, Zeynep Akata, Barbara Caputo -- BMVC 20

Fabio Cermelli 21 Dec 29, 2022
Unofficial implementation of "TTNet: Real-time temporal and spatial video analysis of table tennis" (CVPR 2020)

TTNet-Pytorch The implementation for the paper "TTNet: Real-time temporal and spatial video analysis of table tennis" An introduction of the project c

Nguyen Mau Dung 438 Dec 29, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region (Paper and DataSet). [New] Note that all the emails about the download permission o

Healthcare Intelligence Laboratory 71 Dec 22, 2022
Optimal space decomposition based-product quantization for approximate nearest neighbor search

Optimal space decomposition based-product quantization for approximate nearest neighbor search Abstract Product quantization(PQ) is an effective neare

Mylove 1 Nov 19, 2021
SmallInitEmb - LayerNorm(SmallInit(Embedding)) in a Transformer to improve convergence

SmallInitEmb LayerNorm(SmallInit(Embedding)) in a Transformer I find that when t

PENG Bo 11 Dec 25, 2022
TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently.

Adversarial Chess TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently. Requirements To run

Muthu Chidambaram 30 Sep 07, 2021
QMagFace: Simple and Accurate Quality-Aware Face Recognition

Quality-Aware Face Recognition 26.11.2021 start readme QMagFace: Simple and Accurate Quality-Aware Face Recognition Research Paper Implementation - To

Philipp Terhörst 59 Jan 04, 2023
SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP

scdlpicker SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP Objective This is a simple deep learning (DL) repicker module

Joachim Saul 6 May 13, 2022
A simple pytorch pipeline for semantic segmentation.

SegmentationPipeline -- Pytorch A simple pytorch pipeline for semantic segmentation. Requirements : torch=1.9.0 tqdm albumentations=1.0.3 opencv-pyt

petite7 4 Feb 22, 2022
Generate images from texts. In Russian. In PaddlePaddle

ruDALL-E PaddlePaddle ruDALL-E in PaddlePaddle. Install: pip install rudalle_paddle==0.0.1rc1 Run with free v100 on AI Studio. Original Pytorch versi

AgentMaker 20 Oct 18, 2022
Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time.

BBB Face Recognizer Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time. Instalati

Rafael Azevedo 232 Dec 24, 2022