Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Overview

Human Performance Capture from Monocular Video in the Wild

Paper | Video | Project Page

Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild. We propose a method capable of capturing the dynamic 3D human shape from a monocular video featuring challenging body poses, without any additional input.

If you find our code or paper useful, please cite as

@inproceedings{guo2021human,
  title={Human Performance Capture from Monocular Video in the Wild},
  author={Guo, Chen and Chen, Xu and Song, Jie and Hilliges, Otmar},
  booktitle={2021 International Conference on 3D Vision (3DV)},
  pages={889--898},
  year={2021},
  organization={IEEE}
}

Quick Start

CLone this repo:

git clone https://github.com/MoyGcc/hpcwild.git
cd  hpcwild
conda env create -f environment.yml
conda activate hpcwild

Additional Dependencies:

  1. Kaolin 0.1.0 (https://github.com/NVIDIAGameWorks/kaolin)
  2. MPI mesh library (https://github.com/MPI-IS/mesh)
  3. torch-mesh-isect (https://github.com/vchoutas/torch-mesh-isect)

Download SMPL models (1.0.0 for Python 2.7 (10 shape PCs)) and move them to the corresponding places:

mkdir lib/smpl/smpl_model/
mv /path/to/smpl/models/basicModel_f_lbs_10_207_0_v1.0.0.pkl smpl_rendering/smpl_model/SMPL_FEMALE.pkl
mv /path/to/smpl/models/basicmodel_m_lbs_10_207_0_v1.0.0.pkl smpl_rendering/smpl_model/SMPL_MALE.pkl

Download checkpoints for external modules:

wget https://download.01.org/opencv/openvino_training_extensions/models/human_pose_estimation/checkpoint_iter_370000.pth
mv /path/to/checkpoint_iter_370000.pth external/lightweight-human-pose-estimation.pytorch/checkpoint_iter_370000.pth

wget https://dl.fbaipublicfiles.com/pifuhd/checkpoints/pifuhd.pt pifuhd.pt 
mv /path/to/pifuhd.pt external/pifuhd/checkpoints/pifuhd.pt

Download IPNet weights: https://datasets.d2.mpi-inf.mpg.de/IPNet2020/IPNet_p5000_01_exp_id01.zip
unzip IPNet_p5000_01_exp_id01.zip
mv /path/to/IPNet_p5000_01_exp_id01 registration/experiments/IPNet_p5000_01_exp_id01

gdown --id 1mcr7ALciuAsHCpLnrtG_eop5-EYhbCmz -O modnet_photographic_portrait_matting.ckpt
mv /path/to/modnet_photographic_portrait_matting.ckpt external/MODNet/pretrained/modnet_photographic_portrait_matting.ckpt

Test on 3DPW dataset

Download 3DPW dataset

  1. modify the dataset_path in test.conf.
  2. run bash mesh_recon.sh to obtain the rigid body shape.
  3. run bash registration.sh to register a SMPL+D model to the rigid human body.
  4. run bash tracking.sh to capture the human performance temporally.

Test on your own video

  1. run OpenPose to obtain the 2D keypoints.
  2. run LGD to acquire the initial 3D poses.
  3. run MODNet to extract sihouettes.

Acknowledgement

We use the code in PIFuHD for the rigid body construction and adapt IPNet for human model registration. We use off-the-shelf methods OpenPose and MODNet for the extraction of 2D keypoints and sihouettes. We sincerely thank these authors for their awesome work.

Owner
Chen Guo
Chen Guo
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
Implementation of E(n)-Transformer, which extends the ideas of Welling's E(n)-Equivariant Graph Neural Network to attention

E(n)-Equivariant Transformer (wip) Implementation of E(n)-Equivariant Transformer, which extends the ideas from Welling's E(n)-Equivariant G

Phil Wang 132 Jan 02, 2023
Generates all variables from your .tf files into a variables.tf file.

tfvg Generates all variables from your .tf files into a variables.tf file. It searches for every var.variable_name in your .tf files and generates a v

1 Dec 01, 2022
Implementations of LSTM: A Search Space Odyssey variants and their training results on the PTB dataset.

An LSTM Odyssey Code for training variants of "LSTM: A Search Space Odyssey" on Fomoro. Check out the blog post. Training Install TensorFlow. Clone th

Fomoro AI 95 Apr 13, 2022
Visual Adversarial Imitation Learning using Variational Models (VMAIL)

Visual Adversarial Imitation Learning using Variational Models (VMAIL) This is the official implementation of the NeurIPS 2021 paper. Project website

14 Nov 18, 2022
An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics.

Sketch Simulator An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics. See

12 Dec 18, 2022
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented in Python.

Reinforcement-Learning-Notebooks A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented

Pulkit Khandelwal 1k Dec 28, 2022
Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark Yong

19 Dec 17, 2022
Code accompanying our NeurIPS 2021 traffic4cast challenge

Traffic forecasting on traffic movie snippets This repo contains all code to reproduce our approach to the IARAI Traffic4cast 2021 challenge. In the c

Nina Wiedemann 2 Aug 09, 2022
Algorithmic trading with deep learning experiments

Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph

Alex Honchar 1.4k Jan 02, 2023
A python interface for training Reinforcement Learning bots to battle on pokemon showdown

The pokemon showdown Python environment A Python interface to create battling pokemon agents. poke-env offers an easy-to-use interface for creating ru

Haris Sahovic 184 Dec 30, 2022
PyTorch implementation of PNASNet-5 on ImageNet

PNASNet.pytorch PyTorch implementation of PNASNet-5. Specifically, PyTorch code from this repository is adapted to completely match both my implemetat

Chenxi Liu 314 Nov 25, 2022
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 34 Nov 26, 2022
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation

Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor

Ozan Oktay 1.6k Dec 30, 2022
Official implementation of ACMMM'20 paper 'Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework'

Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework Official code for paper, Self-supervised Video Representation Le

Li Tao 103 Dec 21, 2022
Weakly Supervised End-to-End Learning (NeurIPS 2021)

WeaSEL: Weakly Supervised End-to-end Learning This is a PyTorch-Lightning-based framework, based on our End-to-End Weak Supervision paper (NeurIPS 202

Auton Lab, Carnegie Mellon University 131 Jan 06, 2023
Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

SSAN Introduction This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Menti

benfeng 69 Nov 15, 2022
3D ResNet Video Classification accelerated by TensorRT

Activity Recognition TensorRT Perform video classification using 3D ResNets trained on Kinetics-400 dataset and accelerated with TensorRT P.S Click on

Akash James 39 Nov 21, 2022
Official implementation for "Image Quality Assessment using Contrastive Learning"

Image Quality Assessment using Contrastive Learning Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli and Alan C. Bovik This is the offi

Pavan Chennagiri 67 Dec 30, 2022