The Fundamental Clustering Problems Suite (FCPS) summaries 54 state-of-the-art clustering algorithms, common cluster challenges and estimations of the number of clusters as well as the testing for cluster tendency.

Overview

CRAN_Status_Badge DOI CRAN RStudio mirror downloads CRAN RStudio mirror downloads

FCPS

Fundamental Clustering Problems Suite

The package provides over sixty state-of-the-art clustering algorithms for unsupervised machine learning published in [Thrun and Stier 2021].

Table of contents

  1. Description
  2. Installation
  3. Tutorial Examples
  4. Manual
  5. Use cases
  6. Additional information
  7. References

Description

The Fundamental Clustering Problems Suite (FCPS) summaries over sixty state-of-the-art clustering algorithms available in R language. An important advantage is that the input and output of clustering algorithms is simplified and consistent in order to enable users a swift execution of cluster analysis. By combining mirrored-density plots (MD plots) with statistical testing FCPS provides a tool to investigate the cluster tendency quickly prior to the cluster analysis itself [Thrun 2020]. Common clustering challenges can be generated with arbitrary sample size [Thrun and Ultsch 2020a]. Additionally, FCPS sums 26 indicators with the goal to estimate the number of clusters up and provides an appropriate implementation of the clustering accuracy for more than two clusters [Thrun and Ultsch 2021]. A subset of methods was used in a benchmarking of algorithms published in [Thrun and Ultsch 2020b].

Installation

Installation using CRAN

Install automatically with all dependencies via

install.packages("FCPS",dependencies = T)

# Optionally, for the automatic installation
# of all suggested packages:
Suggested=c("kernlab", "cclust", "dbscan", "kohonen",
            "MCL", "ADPclust", "cluster", "DatabionicSwarm",
            "orclus", "subspace", "flexclust", "ABCanalysis",
            "apcluster", "pracma", "EMCluster", "pdfCluster", "parallelDist",
            "plotly", "ProjectionBasedClustering", "GeneralizedUmatrix",
            "mstknnclust", "densityClust", "parallel", "energy", "R.utils",
            "tclust", "Spectrum", "genie", "protoclust", "fastcluster", 
			"clusterability", "signal", "reshape2", "PPCI", "clustrd", "smacof",
			"rgl", "prclust", "dendextend",
            "moments", "prabclus", "VarSelLCM", "sparcl", "mixtools",
            "HDclassif", "clustvarsel", "knitr", "rmarkdown")

for(i in 1:length(Suggested)) {
  if (!requireNamespace(Suggested[i], quietly = TRUE)) {
    message(paste("Installing the package", Suggested[i]))
    install.packages(Suggested[i], dependencies = T)
  }
}

Installation using Github

Please note, that dependecies have to be installed manually.

remotes::install_github("Mthrun/FCPS")

Installation using R Studio

Please note, that dependecies have to be installed manually.

Tools -> Install Packages -> Repository (CRAN) -> FCPS

Tutorial Examples

The tutorial with several examples can be found on in the vignette on CRAN:

https://cran.r-project.org/web/packages/FCPS/vignettes/FCPS.html

Manual

The full manual for users or developers is available here: https://cran.r-project.org/web/packages/FCPS/FCPS.pdf

Use Cases

Cluster Analysis of High-dimensional Data

The package FCPS provides a clear and consistent access to state-of-the-art clustering algorithms:

library(FCPS)
data("Leukemia")
Data=Leukemia$Distance
Classification=Leukemia$Cls
ClusterNo=6
CA=ADPclustering(Leukemia$DistanceMatrix,ClusterNo)
Cls=ClusterRenameDescendingSize(CA$Cls)
ClusterPlotMDS(Data,Cls,main =Leukemia’,Plotter3D =plotly’)
ClusterAccuracy(Cls,Classification)
[1] 0.9963899

Generating Typical Challenges for Clustering Algorithms

Several clustering challenge can be generated with an arbitrary sample size:

set.seed(600)
library(FCPS)
DataList=ClusterChallenge("Chainlink", SampleSize = 750,
PlotIt=TRUE)
Data=DataList$Chainlink
Cls=DataList$Cls
> ClusterCount(Cls)
$CountPerCluster
$NumberOfClusters
$ClusterPercentages
[1] 377 373
[1] 2
[1] 50.26667 49.73333

Cluster-Tendency

For many applications, it is crucial to decide if a dataset possesses cluster structures:

library(FCPS)
set.seed(600)
DataList=ClusterChallenge("Chainlink",SampleSize = 750)
Data=DataList$Chainlink
Cls=DataList$Cls
library(ggplot2)
ClusterabilityMDplot(Data)+theme_bw()

Estimation of Number of Clusters

The “FCPS” package provides up to 26 indicators to determine the number of clusters:

library(FCPS)
set.seed(135)
DataList=ClusterChallenge("Chainlink",SampleSize = 900)
Data=DataList$Chainlink
Cls=DataList$Cls
Tree=HierarchicalClustering(Data,0,"SingleL")[[3]]
ClusterDendrogram(Tree,4,main="Single Linkage")
MaximumNumber=7
clsm <- matrix(data = 0, nrow = dim(Data)[1], ncol = MaximumNumber)
for (i in 2:(MaximumNumber+1)) {
clsm[,i-1] <- cutree(Tree,i)
}
out=ClusterNoEstimation(Data, ClsMatrix = clsm,
MaxClusterNo = MaximumNumber, PlotIt = TRUE)

Additional information

Authors website http://www.deepbionics.org/
License GPL-3
Dependencies R (>= 3.5.0)
Bug reports https://github.com/Mthrun/FCPS/issues

References

  1. [Thrun/Stier, 2021] Thrun, M. C., & Stier, Q.: Fundamental Clustering Algorithms Suite SoftwareX, Vol. 13(C), pp. 100642. doi 10.1016/j.softx.2020.100642, 2021.
  2. [Thrun, 2020] Thrun, M. C.: Improving the Sensitivity of Statistical Testing for Clusterability with Mirrored-Density Plot, in Archambault, D., Nabney, I. & Peltonen, J. (eds.), Machine Learning Methods in Visualisation for Big Data, DOI 10.2312/mlvis.20201102, The Eurographics Association, Norrköping , Sweden, May, 2020.
  3. [Thrun/Ultsch, 2020a] Thrun, M. C., & Ultsch, A.: Clustering Benchmark Datasets Exploiting the Fundamental Clustering Problems, Data in Brief,Vol. 30(C), pp. 105501, DOI 10.1016/j.dib.2020.105501 , 2020.
  4. [Thrun/Ultsch, 2021] Thrun, M. C., and Ultsch, A.: Swarm Intelligence for Self-Organized Clustering, Artificial Intelligence, Vol. 290, pp. 103237, \doi{10.1016/j.artint.2020.103237}, 2021.
  5. [Thrun/Ultsch, 2020b] Thrun, M. C., & Ultsch, A. : Using Projection based Clustering to Find Distance and Density based Clusters in High-Dimensional Data, Journal of Classification, \doi{10.1007/s00357-020-09373-2}, Springer, 2020.
You might also like...
Abstractive opinion summarization system (SelSum) and the largest dataset of Amazon product summaries (AmaSum). EMNLP 2021 conference paper.
Abstractive opinion summarization system (SelSum) and the largest dataset of Amazon product summaries (AmaSum). EMNLP 2021 conference paper.

Learning Opinion Summarizers by Selecting Informative Reviews This repository contains the codebase and the dataset for the corresponding EMNLP 2021

On Generating Extended Summaries of Long Documents

ExtendedSumm This repository contains the implementation details and datasets used in On Generating Extended Summaries of Long Documents paper at the

Automatic voice-synthetised summaries of latest research papers on arXiv

PaperWhisperer PaperWhisperer is a Python application that keeps you up-to-date with research papers. How? It retrieves the latest articles from arXiv

Code for ACL 21: Generating Query Focused Summaries from Query-Free Resources

marge This repository releases the code for Generating Query Focused Summaries from Query-Free Resources. Please cite the following paper [bib] if you

We evaluate our method on different datasets (including ShapeNet, CUB-200-2011, and Pascal3D+) and achieve state-of-the-art results, outperforming all the other supervised and unsupervised methods and 3D representations, all in terms of performance, accuracy, and training time. This is the unofficial code of  Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes. which achieve state-of-the-art trade-off between accuracy and speed on cityscapes and camvid, without using inference acceleration and extra data Propose a principled and practically effective framework for unsupervised accuracy estimation and error detection tasks with theoretical analysis and state-of-the-art performance.
Propose a principled and practically effective framework for unsupervised accuracy estimation and error detection tasks with theoretical analysis and state-of-the-art performance.

Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles This project is for the paper: Detecting Errors and Estimating

This repository is related to an Arabic tutorial, within the tutorial we discuss the common data structure and algorithms and their worst and best case for each, then implement the code using Python.

Data Structure and Algorithms with Python This repository is related to the Arabic tutorial here, within the tutorial we discuss the common data struc

tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

Comments
  • Mo gclustering2 model based clustering

    Mo gclustering2 model based clustering

    IMPORTANT UPDATE: MoGclustering renamed to ModelBasedClustering MoG Clustering is now defined es Mixture of Gaussians based on EM This is a change contrary to the book [Thrun, 2018]! Additionally density based clustering methods added.

    opened by Mthrun 1
  • Missing function

    Missing function

    `

    install.packages("FCPS") Installing package into ‘/home/roc/R/x86_64-pc-linux-gnu-library/4.0’ (as ‘lib’ is unspecified) trying URL 'https://cloud.r-project.org/src/contrib/FCPS_1.2.7.tar.gz' Content type 'application/x-gzip' length 2859121 bytes (2.7 MB) ================================================== downloaded 2.7 MB

    • installing source package ‘FCPS’ ... ** package ‘FCPS’ successfully unpacked and MD5 sums checked ** using staged installation ** R ** data *** moving datasets to lazyload DB ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path
    • DONE (FCPS)

    The downloaded source packages are in ‘/tmp/Rtmpzb0Mdh/downloaded_packages’

    data('Hepta')

    out=HierarchicalClusterDists(as.matrix(dist(Hepta$Data)),ClusterNo=7) Error in HierarchicalClusterDists(as.matrix(dist(Hepta$Data)), ClusterNo = 7) : could not find function "HierarchicalClusterDists" `

    opened by technocrat 3
Releases(1.2.3)
  • 1.2.3(Jun 23, 2020)

    Many conventional clustering algorithms are provided in this package with consistent input and output, which enables the user to try out algorithms swiftly. Additionally, 26 statistical approaches for the estimation of the number of clusters as well as the the mirrored density plot (MD-plot) of clusterability are implemented. Moreover, the fundamental clustering problems suite (FCPS) offers a variety of clustering challenges any algorithm should handle when facing real world data, see Thrun, M.C., Ultsch A.: "Clustering Benchmark Datasets Exploiting the Fundamental Clustering Problems" (2020), Data in Brief, DOI:10.1016/j.dib.2020.105501.

    Source code(tar.gz)
    Source code(zip)
Owner
Dr. rer. nat. Michael C. Thrun, promovierte 2017 an der Philipps-Universität Marburg am Lehrstuhl für Neuroinformatik unter Prof. Dr. rer. nat. Alfred Ultsch.
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
Some bravo or inspiring research works on the topic of curriculum learning.

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

131 Jan 07, 2023
Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Hah Min Lew 1 Feb 08, 2022
使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,包含C++和Python两种版本的程序实现。本套程序只依赖opencv库就可以运行, 从而彻底摆脱对任何深度学习框架的依赖。

YOLOP-opencv-dnn 使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,依然是包含C++和Python两种版本的程序实现 onnx文件从百度云盘下载,链接:https://pan.baidu.com/s/1A_9cldU

178 Jan 07, 2023
NeROIC: Neural Object Capture and Rendering from Online Image Collections

NeROIC: Neural Object Capture and Rendering from Online Image Collections This repository is for the source code for the paper NeROIC: Neural Object C

Snap Research 647 Dec 27, 2022
[CVPR 2020] Local Class-Specific and Global Image-Level Generative Adversarial Networks for Semantic-Guided Scene Generation

Contents Local and Global GAN Cross-View Image Translation Semantic Image Synthesis Acknowledgments Related Projects Citation Contributions Collaborat

Hao Tang 131 Dec 07, 2022
Keras implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 8.9k Jan 04, 2023
This is a yolo3 implemented via tensorflow 2.7

YoloV3 - an object detection algorithm implemented via TF 2.x source code In this article I assume you've already familiar with basic computer vision

2 Jan 17, 2022
Tensorflow AffordanceNet and AffContext implementations

AffordanceNet and AffContext This is tensorflow AffordanceNet and AffContext implementations. Both are implemented and tested with tensorflow 2.3. The

Beatriz Pérez 6 Dec 01, 2022
A Pytorch implement of paper "Anomaly detection in dynamic graphs via transformer" (TADDY).

TADDY: Anomaly detection in dynamic graphs via transformer This repo covers an reference implementation for the paper "Anomaly detection in dynamic gr

Yue Tan 21 Nov 24, 2022
PyTorch code for training MM-DistillNet for multimodal knowledge distillation

There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge MM-DistillNet is a

51 Dec 20, 2022
DSL for matching Python ASTs

py-ast-rule-engine This library provides a DSL (domain-specific language) to match a pattern inside a Python AST (abstract syntax tree). The library i

1 Dec 18, 2021
A PyTorch implementation of "CoAtNet: Marrying Convolution and Attention for All Data Sizes".

CoAtNet Overview This is a PyTorch implementation of CoAtNet specified in "CoAtNet: Marrying Convolution and Attention for All Data Sizes", arXiv 2021

Justin Wu 268 Jan 07, 2023
[arXiv'22] Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation

Panoptic NeRF Project Page | Paper | Dataset Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation Xiao Fu*, Shangzhan zhang*,

Xiao Fu 111 Dec 16, 2022
Kalidokit is a blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models

Blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models.

Rich 4.5k Jan 07, 2023
Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation (CVPR 2022)

CCAM (Unsupervised) Code repository for our paper "CCAM: Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localizati

Computer Vision Insitute, SZU 113 Dec 27, 2022
Code for Towards Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games

Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games How to run our algorithm? Create the new environment using: conda

MARL @ SJTU 8 Dec 27, 2022
👐OpenHands : Making Sign Language Recognition Accessible (WiP 🚧👷‍♂️🏗)

👐 OpenHands: Sign Language Recognition Library Making Sign Language Recognition Accessible Check the documentation on how to use the library: ReadThe

AI4Bhārat 69 Dec 12, 2022
Syed Waqas Zamir 906 Dec 30, 2022
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022