Official repository for "On Improving Adversarial Transferability of Vision Transformers" (2021)

Overview

Improving-Adversarial-Transferability-of-Vision-Transformers

Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Fahad Khan, Fatih Porikli

arxiv link

demo trm

Abstract: Vision transformers (ViTs) process input images as sequences of patches via self-attention; a radically different architecture than convolutional neural networks(CNNs). This makes it interesting to study the adversarial feature space of ViT models and their transferability. In particular, we observe that adversarial patterns found via conventional adversarial attacks show very low black-box transferability even for large ViT models. However, we show that this phenomenon is only due to the sub-optimal attack procedures that do not leverage the true representation potential of ViTs. A deep ViT is composed of multiple blocks, with a consistent architecture comprising of self-attention and feed-forward layers, where each block is capable of independently producing a class token. Formulating an attack using only the last class token (conventional approach) does not directly leverage the discriminative information stored in the earlier tokens, leading to poor adversarial transferability of ViTs. Using the compositional nature of ViT models, we enhance transferability of existing attacks by introducing two novel strategies specific to the architecture of ViT models.(i) Self-Ensemble:We propose a method to find multiple discriminative pathways by dissecting a single ViT model into an ensemble of networks. This allows explicitly utilizing class-specific information at each ViT block.(ii) Token Refinement:We then propose to refine the tokens to further enhance the discriminative capacity at each block of ViT. Our token refinement systematically combines the class tokens with structural information preserved within the patch tokens. An adversarial attack when applied to such refined tokens within the ensemble of classifiers found in a single vision transformer has significantly higher transferability and thereby brings out the true generalization potential of the ViT’s adversarial space.

Contents

  1. Quickstart
  2. Self-Ensemble
  3. Token Refinement Module
  4. Training TRM
  5. References
  6. Citation

Requirements

pip install -r requirements.txt

Quickstart

(top) To directly run demo transfer attacks using baseline, ensemble, and ensemble with TRM strategies, use following scripts. The path to the dataset must be updated.

./scripts/run_attack.sh

Dataset

We use a subset of the ImageNet validation set (5000 images) containing 5 random samples from each class that are correctly classified by both ResNet50 and ViT-small. This dataset is used for all experiments. This list of images is present in data/image_list.json. In following code, setting the path to the original ImageNet 2012 val set is sufficient; only the subset of images will be used for the evaluation.

Self-Ensemble Strategy

(top) Run transfer attack using our ensemble strategy as follows. DATA_DIR points to the root directory containing the validation images of ImageNet (original imagenet). We support attack types FGSM, PGD, MI-FGSM, DIM, and TI by default. Note that any other attack can be applied on ViT models using the self-ensemble strategy.

python test.py \
  --test_dir "$DATA_DIR" \
  --src_model deit_tiny_patch16_224 \
  --tar_model tnt_s_patch16_224  \
  --attack_type mifgsm \
  --eps 16 \
  --index "all" \
  --batch_size 128

For other model families, the pretrained models will have to be downloaded and the paths updated in the relevant files under vit_models.

Token Refinement Module

(top) For self-ensemble attack with TRM, run the following. The same options are available for attack types and DATA_DIR must be set to point to the data directory.

python test.py \
  --test_dir "$DATA_DIR" \
  --src_model tiny_patch16_224_hierarchical \
  --tar_model tnt_s_patch16_224  \
  --attack_type mifgsm \
  --eps 16 \
  --index "all" \
  --batch_size 128

Pretrained TRM modules

Model Avg Acc Inc Pretrained
DeiT-T 12.43 Link
DeiT-S 15.21 Link
DeiT-B 16.70 Link

Average accuracy increase (Avg Acc Inc) refers to the improvement of discriminativity of each ViT block (measured by top-1 accuracy on ImageNet val set using each block output). The increase after adding TRM averaged across blocks is reported.

Training TRM

(top) For training the TRM module, use the following:

./scripts/train_trm.sh

Set the variables for experiment name (EXP_NAME) used for logging checkpoints and update DATA_PATH to point to the ImageNet 2012 root directory (containing /train and /val folders). We train using a single GPU. We initialize the weights using a pre-trained model and update only the TRM weights.

For using other models, replace the model name and the pretrained model path as below:

python -m torch.distributed.launch \
  --nproc_per_node=1 \
  --master_port="$RANDOM" \
  --use_env train_trm.py \
  --exp "$EXP_NAME" \
  --model "small_patch16_224_hierarchical" \
  --lr 0.01 \
  --batch-size 256 \
  --start-epoch 0 \
  --epochs 12 \
  --data "$DATA_PATH" \
  --pretrained "https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth" \
  --output_dir "checkpoints/$EXP_NAME"

References

(top) Code borrowed from DeiT repository and TIMM library. We thank them for their wonderful code bases.

Citation

If you find our work, this repository, or pretrained transformers with refined tokens useful, please consider giving a star and citation.

@misc{naseer2021improving,
      title={On Improving Adversarial Transferability of Vision Transformers}, 
      author={Muzammal Naseer and Kanchana Ranasinghe and Salman Khan and Fahad Shahbaz Khan and Fatih Porikli},
      year={2021},
      eprint={2106.04169},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
You might also like...
This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021.

inverse_attention This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021. Le

Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Certified Robustness to Adversarial Word Substitutions This is the official GitHub repository for the following paper: Certified Robustness to Adversa

The repository offers the official implementation of our paper in PyTorch.

Cloth Interactive Transformer (CIT) Cloth Interactive Transformer for Virtual Try-On Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Phi

Official code repository of the paper Learning Associative Inference Using Fast Weight Memory by Schlag et al.

Learning Associative Inference Using Fast Weight Memory This repository contains the offical code for the paper Learning Associative Inference Using F

Official repository for
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)
Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)

Official PyTorch Implementation for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'2021, Oral Presentation) HOTR: End-to-

Competitive Programming Club, Clinify's Official repository for CP problems hosting by club members.

Clinify-CPC_Programs This repository holds the record of the competitive programming club where the competitive coding aspirants are thriving hard and

Comments
  • ImageNet dataset cannot be loaded

    ImageNet dataset cannot be loaded

    I tested the code (run_attack.sh) and found that I cannot load imagenet dataset. I dug into it and found that maybe its because in dataset.py, in class AdvImageNet: self.image_list is a set loaded with the predifined data/image_list.json, so an element string in it looks like this: n01820546/ILSVRC2012_val_00027008.JPEG Nonetheless, the is_valid_file function used in super init keeps only the last 38 char of the image file path, like ILSVRC2012_val_00027008.JPEG , to check if it's listed in self.image_list. Thus, the function will always return false as there is no class folder in the string, and no image will be loaded.

    A simple workaround will work (at least I've tested):

    class AdvImageNet(torchvision.datasets.ImageFolder):
    
        def __init__(self, image_list="data/image_list.json", *args, **kwargs):
            self.image_list = list(json.load(open(image_list, "r"))["images"])
            for i in range(len(self.image_list)):
                self.image_list[i] = self.image_list[i].split('/')[1]
            super(AdvImageNet, self).__init__(
                is_valid_file=self.is_valid_file, *args, **kwargs)
    
        def is_valid_file(self, x: str) -> bool:
            return x[-38:] in self.image_list
    

    Another possibility is that the imagenet structure used by this repo is different from mine:

      val/ <-- designated as DATA_DIR in run_attack.sh
        n01820546/
          ILSVRC2012_val_00027008.JPEG
    

    In this case, could you specify how the dataset should be structured? Thank you!

    opened by HigasaOR 5
Releases(v0)
Owner
Muzammal Naseer
PhD student at Australian National University.
Muzammal Naseer
Evolving neural network parameters in JAX.

Evolving Neural Networks in JAX This repository holds code displaying techniques for applying evolutionary network training strategies in JAX. Each sc

Trevor Thackston 6 Feb 12, 2022
Prototype-based Incremental Few-Shot Semantic Segmentation

Prototype-based Incremental Few-Shot Semantic Segmentation Fabio Cermelli, Massimiliano Mancini, Yongqin Xian, Zeynep Akata, Barbara Caputo -- BMVC 20

Fabio Cermelli 21 Dec 29, 2022
Freecodecamp Scientific Computing with Python Certification; Solution for Challenge 2: Time Calculator

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Hellen Namulinda 0 Feb 26, 2022
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

VITA 161 Jan 02, 2023
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

TiVRA AI 13 Aug 18, 2022
Fast and simple implementation of RL algorithms, designed to run fully on GPU.

RSL RL Fast and simple implementation of RL algorithms, designed to run fully on GPU. This code is an evolution of rl-pytorch provided with NVIDIA's I

Robotic Systems Lab - Legged Robotics at ETH Zürich 68 Dec 29, 2022
3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry

SynergyNet 3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry Cho-Ying Wu, Qiangeng Xu, Ulrich Neumann, CGIT Lab at Unive

Cho-Ying Wu 239 Jan 06, 2023
f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation

f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation [Paper] [PyTorch] [MXNet] [Video] This repository provides code for training

Visual Understanding Lab @ Samsung AI Center Moscow 516 Dec 21, 2022
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
Hippocampal segmentation using the UNet network for each axis

Hipposeg Hippocampal segmentation using the UNet network for each axis, inspired by https://github.com/MICLab-Unicamp/e2dhipseg Red: False Positive Gr

Juan Carlos Aguirre Arango 0 Sep 02, 2021
All of the figures and notebooks for my deep learning book, for free!

"Deep Learning - A Visual Approach" by Andrew Glassner This is the official repo for my book from No Starch Press. Ordering the book My book is called

Andrew Glassner 227 Jan 04, 2023
Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022)

Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022) Junjie Ye, Changhong Fu, Guangze Zheng, Danda Pani Paudel, and Guang Chen. Uns

Intelligent Vision for Robotics in Complex Environment 91 Dec 30, 2022
NasirKhusraw - The TSP solved using genetic algorithm and show TSP path overlaid on a map of the Iran provinces & their capitals.

Nasir Khusraw : Travelling Salesman Problem The TSP solved using genetic algorithm. This project show TSP path overlaid on a map of the Iran provinces

J Brave 2 Sep 01, 2022
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, whi

KAIST Data Mining Lab 8 Dec 07, 2022
Rust bindings for the C++ api of PyTorch.

tch-rs Rust bindings for the C++ api of PyTorch. The goal of the tch crate is to provide some thin wrappers around the C++ PyTorch api (a.k.a. libtorc

Laurent Mazare 2.3k Dec 30, 2022
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 09, 2023
Pytorch implementation of Generative Models as Distributions of Functions 🌿

Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function

Emilien Dupont 117 Dec 29, 2022
NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows

NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows This repo contains the code for the paper Tractable Densit

Layer6 Labs 4 Dec 12, 2022
STARCH compuets regional extreme storm physical characteristics and moisture balance based on spatiotemporal precipitation data from reanalysis or climate model data.

STARCH (Storm Tracking And Regional CHaracterization) STARCH computes regional extreme storm physical and moisture balance characteristics based on sp

Onosama 7 Oct 20, 2022
Implementation for the EMNLP 2021 paper "Interactive Machine Comprehension with Dynamic Knowledge Graphs".

Interactive Machine Comprehension with Dynamic Knowledge Graphs Implementation for the EMNLP 2021 paper. Dependencies apt-get -y update apt-get instal

Xingdi (Eric) Yuan 19 Aug 23, 2022