Manifold Alignment for Semantically Aligned Style Transfer

Related tags

Deep LearningMAST
Overview

Manifold Alignment for Semantically Aligned Style Transfer

[Paper]

res1 GUI Demo

Getting Started

MAST has been tested on CentOS 7.6 with python >= 3.6. It supports both GPU and CPU inference. If you don't have a suitable device, try running our Colab demo.

Clone the repo:

git clone https://github.com/NJUHuoJing/MAST.git

prepare the checkpoints:

cd MAST
chmod 777 scripts/prepare_data.sh
scripts/prepare_data.sh

Install the requirements:

conda create -n mast-env python=3.6
conda activate mast-env
pip install -r requirements.txt

# If you want to use post smoothing as the same as PhotoWCT, then install the requirements below;
# You can also just skip it to use fast post smoothing, remember to change cfg.TEST.PHOTOREALISTIC.FAST_SMOOTHING=true
pip install -U setuptools
pip install cupy
pip install pynvrtc

Running the Demo

Artistic style transfer

First set MAST_CORE.ORTHOGONAL_CONSTRAINT=false in configs/config.yaml. Then use the script test_artistic.py to generate the artistic stylized image by following the command below:

# not use seg
python test_artistic.py --cfg_path configs/config.yaml --content_path data/default/content/4.png --style_path data/default/style/4.png --output_dir results/test/default

# use --content_seg_path and --style_seg_path to user edited style transfer
python test_artistic.py --cfg_path configs/config.yaml --content_path data/default/content/4.png --style_path data/default/style/4.png --output_dir results/test/default --content_seg_path data/default/content_segmentation/4.png --style_seg_path data/default/style_segmentation/4.png --seg_type labelme --resize 512

Photo-realistic style transfer

First set MAST_CORE.ORTHOGONAL_CONSTRAINT=true in configs/config.yaml. Then use the script test_photorealistic.py to generate the photo-realistic stylized image by following the command below:

# not use seg
python test_photorealistic.py --cfg_path configs/config.yaml --content_path data/photo_data/content/in1.png --style_path data/photo_data/style/tar1.png --output_dir results/test/photo --resize 512

# or use --content_seg_path and --style_seg_path to user edited style transfer
python test_photorealistic.py --cfg_path configs/config.yaml --content_path data/photo_data/content/in1.png --style_path data/photo_data/style/tar1.png --output_dir results/test/photo --content_seg_path data/photo_data/content_segmentation/in1.png --style_seg_path data/photo_data/style_segmentation/tar1.png --seg_type dpst --resize 512

GUI For Artistic style transfer and User Editing

We provide a gui for user-controllable artistic image stylization. Just use the command below to run test_gui.py

python test_gui.py --cfg_path configs/config.yaml

Features

  1. You can use different colors to control the style transfer in different semantic areas.
  2. The button Expand and Expand num respectively control whether to expand the selected semantic area and the degree of expansion.

See the gif demo for more details.

Google Colab

If you do not have a suitable environment to run this project then you could give Google Colab a try. It allows you to run the project in the cloud, free of charge. You may try our Colab demo using the notebook we have prepared: Colab Demo

Citation

@inproceedings{huo2021manifold,
    author = {Jing Huo and Shiyin Jin and Wenbin Li and Jing Wu and Yu-Kun Lai and Yinghuan Shi and Yang Gao},
    title = {Manifold Alignment for Semantically Aligned Style Transfer},
    booktitle = {IEEE International Conference on Computer Vision},
    pages     = {14861-14869},
    year = {2021}
}

References

  • The post smoothing module is borrowed from PhotoWCT
A CNN implementation using only numpy. Supports multidimensional images, stride, etc.

A CNN implementation using only numpy. Supports multidimensional images, stride, etc. Speed up due to heavy use of slicing and mathematical simplification..

2 Nov 30, 2021
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

Qiujie (Jay) Dong 2 Oct 31, 2022
Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN

Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN Introduction Image super-resolution (SR) is the process of recovering high-resoluti

8 Apr 15, 2022
AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation

AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation A pytorch-version implementation codes of paper:

11 Dec 13, 2022
本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

说明 本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。 python依赖 tf2.3 、cv2、numpy、pyqt5 pyqt5安装 pip install PyQt5 pip install PyQt5-tools 使用 程

4 May 04, 2022
This repository contains part of the code used to make the images visible in the article "How does an AI Imagine the Universe?" published on Towards Data Science.

Generative Adversarial Network - Generating Universe This repository contains part of the code used to make the images visible in the article "How doe

Davide Coccomini 9 Dec 18, 2022
Reproducing code of hair style replacement method from Barbershorp.

Barbershorp Reproducing code of hair style replacement method from Barbershorp. Also reproduces II2S, an improved version of Image2StyleGAN. Requireme

1 Dec 24, 2021
This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).

Dynamic-Vision-Transformer (Pytorch) This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT). Not All Ima

210 Dec 18, 2022
Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi.

Spchcat Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi. Description spchcat is a command-line tool that read

Pete Warden 279 Jan 03, 2023
Codes for CVPR2021 paper "PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization"

PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization (CVPR 2021) This is the official implementation of PW

Intelligent Robotics and Machine Vision Lab 42 Dec 18, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
SegNet-Basic with Keras

SegNet-Basic: What is Segnet? Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-wise Image Segmentation Segnet = (Encoder + Decoder)

Yad Konrad 81 Jun 30, 2022
Intrusion Detection System using ensemble learning (machine learning)

IDS-ML implementation of an intrusion detection system using ensemble machine learning methods Data set This project is carried out using the UNSW-15

4 Nov 25, 2022
🔀 Visual Room Rearrangement

AI2-THOR Rearrangement Challenge Welcome to the 2021 AI2-THOR Rearrangement Challenge hosted at the CVPR'21 Embodied-AI Workshop. The goal of this cha

AI2 55 Dec 22, 2022
Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Google Interns 50 Dec 21, 2022
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)

English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open

19.4k Jan 04, 2023
TUPÃ was developed to analyze electric field properties in molecular simulations

TUPÃ: Electric field analyses for molecular simulations What is TUPÃ? TUPÃ (pronounced as tu-pan) is a python algorithm that employs MDAnalysis engine

Marcelo D. Polêto 10 Jul 17, 2022
[CVPR 2021] MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition

MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition (CVPR 2021) arXiv Prerequisite PyTorch = 1.2.0 Python3 torchvision PIL argpar

51 Nov 11, 2022
Code implementation for the paper 'Conditional Gaussian PAC-Bayes'.

CondGauss This repository contains PyTorch code for the paper Stochastic Gaussian PAC-Bayes. A novel PAC-Bayesian training method is implemented. Ther

0 Nov 01, 2021