Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach

Overview

Introduction

Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach


Datasets: WebFG-496 & WebiNat-5089

WebFG-496

WebFG-496 contains 200 subcategories of the "Bird" (Web-bird), 100 subcategories of the Aircraft" (Web-aircraft), and 196 subcategories of the "Car" (Web-car). It has a total number of 53339 web training images.

Download the dataset:

wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-aircraft.tar.gz
wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-bird.tar.gz
wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-car.tar.gz

WebiNat-5089

WebiNat-5089 is a large-scale webly supervised fine-grained dataset, which consists of 5089 subcategories and 1184520 web training images.

Download the dataset:

wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-iNat.tar.gz.part-00
wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-iNat.tar.gz.part-01
wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-iNat.tar.gz.part-02
wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-iNat.tar.gz.part-03
wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-iNat.tar.gz.part-04
wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-iNat.tar.gz.part-05
wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-iNat.tar.gz.part-06
wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-iNat.tar.gz.part-07
wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-iNat.tar.gz.part-08
wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-iNat.tar.gz.part-09
wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-iNat.tar.gz.part-10
wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-iNat.tar.gz.part-11
wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-iNat.tar.gz.part-12
wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-iNat.tar.gz.part-13

Dataset Briefing

  1. The statistics of popular fine-grained datasets and our datasets. “Supervision" means the training data is manually labeled (“Manual”) or collected from the web (“Web”).

dataset-stats

  1. Detailed construction process of training data in WebFG-496 and WebiNat-5089. “Testing Source” indicates where testing images come from. “Imbalance” is the number of images in the largest class divided by the number of images in the smallest.

dataset-construction_detail

  1. Rough label accuracy of training data estimated by random sampling for WebFG-496 and WebiNat-5089.

dataset-estimated_label_accuracy


Peer-learning model

Network Architecture

The architecture of our proposed peer-learning model is as follows network

Installation

After creating a virtual environment of python 3.5, run pip install -r requirements.txt to install all dependencies

How to use

The code is currently tested only on GPU

  • Data Preparation

    • WebFG-496

      Download data into PLM root directory and decompress them using

      tar -xvf web-aircraft.tar.gz
      tar -xvf web-bird.tar.gz
      tar -xvf web-car.tar.gz
      
    • WebiNat-5089

      Download data into PLM root directory and decompress them using

      cat web-iNat.tar.gz.part-* | tar -zxv
      
  • Source Code

    • If you want to train the whole network from beginning using source code on the WebFG-496 dataset, please follow subsequent steps

      • In Web496_train.sh
        • Modify CUDA_VISIBLE_DEVICES to proper cuda device id.
        • Modify DATA to web-aircraft/web-bird/web-car as needed and then modify N_CLASSES accordingly.
      • Activate virtual environment(e.g. conda) and then run the script
        bash Web496_train.sh
        
    • If you want to train the whole network from beginning using source code on the WebiNat-5089 dataset, please follow subsequent steps

      • Modify CUDA_VISIBLE_DEVICES to proper cuda device id in Web5089_train.sh.
      • Activate virtual environment(e.g. conda) and then run the script
        bash Web5089_train.sh
        
  • Demo

    • If you just want to do a quick test on the model and check the final fine-grained recognition performance on the WebFG-496 dataset, please follow subsequent steps

      • Download one of the following trained models into model/ using
        wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/Models/plm_web-aircraft_bcnn_best-epoch_74.38.pth
        wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/Models/plm_web-bird_bcnn_best-epoch_76.48.pth
        wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/Models/plm_web-car_bcnn_best-epoch_78.52.pth
        
      • Activate virtual environment (e.g. conda)
      • In Web496_demo.sh
        • Modify CUDA_VISIBLE_DEVICES to proper cuda device id.
        • Modify the model name according to the model downloaded.
        • Modify DATA to web-aircraft/web-bird/web-car according to the model downloaded and then modify N_CLASSES accordingly.
      • Run demo using bash Web496_demo.sh
    • If you just want to do a quick test on the model and check the final fine-grained recognition performance on the WebiNat-5089 dataset, please follow subsequent steps

      • Download one of the following trained models into model/ using
        wget https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/Models/plm_web-inat_resnet50_best-epoch_54.56.pth
        
      • Activate virtual environment (e.g. conda)
      • In Web5089_demo.sh
        • Modify CUDA_VISIBLE_DEVICES to proper cuda device id.
        • Modify the model name according to the model downloaded.
      • Run demo using bash Web5089_demo.sh

Results

  1. The comparison of classification accuracy (%) for benchmark methods and webly supervised baselines (Decoupling, Co-teaching, and our Peer-learning) on the WebFG-496 dataset.

network

  1. The comparison of classification accuracy (%) of benchmarks and our proposed webly supervised baseline Peer-learning on the WebiNat-5089 dataset.

network

  1. The comparisons among our Peer-learning model (PLM), VGG-19, B-CNN, Decoupling (DP), and Co-teaching (CT) on sub-datasets Web-aircraft, Web-bird, and Web-car in WebFG-496 dataset. The value on each sub-dataset is plotted in the dotted line and the average value is plotted in solid line. It should be noted that the classification accuracy is the result of the second stage in the two-step training strategy. Since we have trained 60 epochs in the second stage on the basic network VGG-19, we only compare the first 60 epochs in the second stage of our approach with VGG-19

network


Citation

If you find this useful in your research, please consider citing:

@inproceedings{
title={Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach},
author={Zeren Sun, Yazhou Yao, Xiu-Shen Wei, Yongshun Zhang, Fumin Shen, Jianxin Wu, Jian Zhang, Heng Tao Shen},
booktitle={IEEE International Conference on Computer Vision (ICCV)},
year={2021}
}
Eth brownie struct encoding example

eth-brownie struct encoding example Overview This repository contains an example of encoding a struct, so that it can be used in a function call, usin

Ittai Svidler 2 Mar 04, 2022
FinEAS: Financial Embedding Analysis of Sentiment 📈

FinEAS: Financial Embedding Analysis of Sentiment 📈 (SentenceBERT for Financial News Sentiment Regression) This repository contains the code for gene

LHF Labs 31 Dec 13, 2022
StyleGAN2 - Official TensorFlow Implementation

StyleGAN2 - Official TensorFlow Implementation

NVIDIA Research Projects 10.1k Dec 28, 2022
State of the Art Neural Networks for Generative Deep Learning

pyradox-generative State of the Art Neural Networks for Generative Deep Learning Table of Contents pyradox-generative Table of Contents Installation U

Ritvik Rastogi 8 Sep 29, 2022
'A C2C E-COMMERCE TRUST MODEL BASED ON REPUTATION' Python implementation

Project description A library providing functionalities to calculate reputation and degree of trust on C2C ecommerce platforms. The work is fully base

Davide Bigotti 2 Dec 14, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022
Fast and simple implementation of RL algorithms, designed to run fully on GPU.

RSL RL Fast and simple implementation of RL algorithms, designed to run fully on GPU. This code is an evolution of rl-pytorch provided with NVIDIA's I

Robotic Systems Lab - Legged Robotics at ETH Zürich 68 Dec 29, 2022
Official PyTorch implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation

U-GAT-IT — Official PyTorch Implementation : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Imag

Hyeonwoo Kang 2.4k Jan 04, 2023
Vector Quantized Diffusion Model for Text-to-Image Synthesis

Vector Quantized Diffusion Model for Text-to-Image Synthesis Due to company policy, I have to set microsoft/VQ-Diffusion to private for now, so I prov

Shuyang Gu 294 Jan 05, 2023
This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation)

This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation) Usage example python dynamic_inverted_softmax.py --sims_train

36 Dec 29, 2022
A list of all named GANs!

The GAN Zoo Every week, new GAN papers are coming out and it's hard to keep track of them all, not to mention the incredibly creative ways in which re

Avinash Hindupur 12.9k Jan 08, 2023
Accelerated NLP pipelines for fast inference on CPU and GPU. Built with Transformers, Optimum and ONNX Runtime.

Optimum Transformers Accelerated NLP pipelines for fast inference 🚀 on CPU and GPU. Built with 🤗 Transformers, Optimum and ONNX runtime. Installatio

Aleksey Korshuk 115 Dec 16, 2022
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),

Deep Learning for HEP 57 Oct 22, 2022
This repository collects project-relevant Isabelle/HOL formalizations.

Isabelle/HOL formalizations related to the AuReLeE project Formalization of Abstract Argumentation Frameworks See AbstractArgumentation folder for the

AuReLeE project 1 Sep 10, 2022
A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning

A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning Website • About • Installation • Using OpenDR

OpenDR 304 Dec 28, 2022
This repository contains implementations and illustrative code to accompany DeepMind publications

DeepMind Research This repository contains implementations and illustrative code to accompany DeepMind publications. Along with publishing papers to a

DeepMind 11.3k Dec 31, 2022
Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022)

Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022) Please cite "Independent SE(3)-Equivar

Octavian Ganea 154 Jan 02, 2023
GUI for a Vocal Remover that uses Deep Neural Networks.

GUI for a Vocal Remover that uses Deep Neural Networks.

4.4k Jan 07, 2023
Official PyTorch implementation of "AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks"

AASIST This repository provides the overall framework for training and evaluating audio anti-spoofing systems proposed in 'AASIST: Audio Anti-Spoofing

Clova AI Research 56 Jan 02, 2023