Style transfer, deep learning, feature transform

Overview

License CC BY-NC-SA 4.0 Python 2.7 Python 3.5

FastPhotoStyle

License

Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).

What's new

Date News
2018-07-25 Migrate to pytorch 0.4.0. For pytorch 0.3.0 user, check out FastPhotoStyle for pytorch 0.3.0.
Add a tutorial showing 3 ways of using the FastPhotoStyle algorithm.
2018-07-10 Our paper is accepted by the ECCV 2018 conference!!!

About

Given a content photo and a style photo, the code can transfer the style of the style photo to the content photo. The details of the algorithm behind the code is documented in our arxiv paper. Please cite the paper if this code repository is used in your publications.

A Closed-form Solution to Photorealistic Image Stylization
Yijun Li (UC Merced), Ming-Yu Liu (NVIDIA), Xueting Li (UC Merced), Ming-Hsuan Yang (NVIDIA, UC Merced), Jan Kautz (NVIDIA)
European Conference on Computer Vision (ECCV), 2018

Tutorial

Please check out the tutorial.

Comments
  • RuntimeError

    RuntimeError

    I am receiving this error: RuntimeError: the number of sizes provided must be greater or equal to the number of dimensions in the tensor at /opt/conda/conda-bld/pytorch_1501972792122/work/pytorch-0.1.12/torch/lib/THC/generic/THCTensor.c:299

    opened by matthewarthur 16
  • Running FastPhotoStyle on MacOS

    Running FastPhotoStyle on MacOS

    Hi I'm a bit new to Python and have trouble understanding the messages I get when running "converter.py" in Terminal:

    usage: cp [-R [-H | -L | -P]] [-fi | -n] [-apvXc] source_file target_file cp [-R [-H | -L | -P]] [-fi | -n] [-apvXc] source_file ... target_directory

    What am I supposed to do next? These don't seem to be standard Python asks and I couldn't find a user guide on how to use this script. Forgive me if I'm missing something obvious

    opened by fabulousrice 10
  • Failed with UMFPACK_ERROR_out_of_memory

    Failed with UMFPACK_ERROR_out_of_memory

    Thanks for the great code. When I run the algorithm with my own high-resolution images (655 * 1280), I find that when using scipy.sparse.linalg.spsolve with scikit-umfpack as solver, it requires too much memory (larger than 128GB). After some investigations, I found the problem might be OS dependent. However, I actually followed the instructions: my OS is Ubuntu 16.04, also the same CUDA and python version.

    I wonder if anyone struggles at the same issue with me, and if there is any other solver. Thanks.

    opened by ycjing 8
  • ValueError: total size of new array must be unchanged

    ValueError: total size of new array must be unchanged

    What am I doing wrong? The simple demo with global style works, but trying with label maps I get an error.

    Picture of the images and the visualized label maps: fps

    I run this command:

    python demo.py \
    --content_image_path images/custom2/content1.png \
    --content_seg_path images/custom2/content1.label/label.png \
    --style_image_path images/custom2/style1.png \
    --style_seg_path images/custom2/style1.label/label.png \
    --output_image_path results/example2.png
    

    Output and error:

    Elapsed time in stylization: 0.417996
    Traceback (most recent call last):
      File "demo.py", line 43, in <module>
        cuda=args.cuda,
      File "/home/ubuntu/.fast-photo-style/process_stylization.py", line 62, in stylization
        stylized_img = p_wct.transform(cont_img, styl_img, cont_seg, styl_seg)
      File "/home/ubuntu/.fast-photo-style/photo_wct.py", line 35, in transform
        csF4 = self.__feature_wct(cF4, sF4, cont_seg, styl_seg)
      File "/home/ubuntu/.fast-photo-style/photo_wct.py", line 88, in __feature_wct
        cont_mask = np.where(t_cont_seg.reshape(t_cont_seg.shape[0] * t_cont_seg.shape[1]) == l)
    ValueError: total size of new array must be unchanged
    
    opened by Instagit 8
  • RuntimeError: cuda runtime error (2) : out of memory

    RuntimeError: cuda runtime error (2) : out of memory

    THCudaCheck FAIL file=/opt/conda/conda-bld/pytorch_1501969512886/work/pytorch-0.1.12/torch/lib/THC/generic/THCStorage.cu line=66 error=2 : out of memory Traceback (most recent call last): File "demo.py", line 68, in stylized_img = p_wct.transform(cont_img, styl_img, cont_seg, styl_seg) File "/home/boss/FastPhotoStyle-master/photo_wct.py", line 36, in transform sF4,sF3,sF2,sF1 = self.e4.forward_multiple(styl_img) File "/home/boss/FastPhotoStyle-master/models.py", line 393, in forward_multiple out1 = self.conv3(out1) File "/home/boss/anaconda2/envs/NVIDIA/lib/python3.5/site-packages/torch/nn/modules/module.py", line 206, in call result = self.forward(*input, **kwargs) File "/home/boss/anaconda2/envs/NVIDIA/lib/python3.5/site-packages/torch/nn/modules/conv.py", line 237, in forward self.padding, self.dilation, self.groups) File "/home/boss/anaconda2/envs/NVIDIA/lib/python3.5/site-packages/torch/nn/functional.py", line 40, in conv2d return f(input, weight, bias) RuntimeError: cuda runtime error (2) : out of memory at /opt/conda/conda-bld/pytorch_1501969512886/work/pytorch-0.1.12/torch/lib/THC/generic/THCStorage.cu:66

    opened by z1412247644 8
  • Much Slower Than the Reported Time

    Much Slower Than the Reported Time

    Hi, I tested your code by running demo.sh with a K40m GPU, but my CUDA version is 8.0 (not 9.1). The total time is about 145s, more than 10 times slower than the reported time in the paper (11.39s for 1K image size). Besides a better GPU (Titan XP), I wonder whether the new CUDA is the key for the high performance. Thanks.

    opened by onlywuyiwuyi 5
  • OSError: [WinError 126] The specified module could not be found

    OSError: [WinError 126] The specified module could not be found

    Hi, I am running FastPhotoStyle code on Windows 10 and using Python 3.7, CUDA 10.0 and cuda 9.1. Although I made the change that was suggested to upgrade the version of Python from string to Byte, I am still getting the same error. Can you please suggest a fix for this issue.

    Resize image: (803,538)->(803,538) Resize image: (960,540)->(960,540) Elapsed time in stylization: 2.325060 Elapsed time in propagation: 83.987388 Elapsed time in post processing: 0.015629 Traceback (most recent call last): File "demo.py", line 47, in no_post=args.no_post File "D:\TrainImages\FastPhotoStyle-master\process_stylization.py", line 135, in stylization out_img = smooth_filter(out_img, cont_pilimg, f_radius=15, f_edge=1e-1) File "D:\TrainImages\FastPhotoStyle-master\smooth_filter.py", line 402, in smooth_filter best_ = smooth_local_affine(output_, input_, 1e-7, 3, H, W, f_radius, f_edge) File "D:\TrainImages\FastPhotoStyle-master\smooth_filter.py", line 333, in smooth_local_affine program = Program(src.encode('utf-8'), 'best_local_affine_kernel.cu'.encode('utf-8')) File "C:\Users\SD\Anaconda3\lib\site-packages\pynvrtc\compiler.py", line 49, in init self._interface = NVRTCInterface(lib_name) File "C:\Users\SD\Anaconda3\lib\site-packages\pynvrtc\interface.py", line 87, in init self._load_nvrtc_lib(lib_path) File "C:\Users\SD\Anaconda3\lib\site-packages\pynvrtc\interface.py", line 109, in _load_nvrtc_lib self.lib = cdll.LoadLibrary(name) File "C:\Users\SD\Anaconda3\lib\ctypes_init.py", line 434, in LoadLibrary return self.dlltype(name) File "C:\Users\SD\Anaconda3\lib\ctypes_init.py", line 356, in init self._handle = _dlopen(self._name, mode) OSError: [WinError 126] The specified module could not be found

    opened by Sunsmiles2 4
  • change image load from 3ch to 1ch

    change image load from 3ch to 1ch

    This addresses issue #55. One expects a 1 channel mask (resize based only on height and width) but you force this to become a 3 channel mask upon loading (mode="RGB"). Now we correctly get a 1 channel 8 bit mask.

    opened by dhpollack 4
  • Can't install cupy

    Can't install cupy

    Command:

    pip install cupy
    

    Result:

    ERROR: Complete output from command python setup.py egg_info:
        ERROR: Options: {'package_name': 'cupy', 'long_description': None, 'wheel_libs': [], 'wheel_includes': [], 'no_rpath': False, 'profile': False, 'linetrace': False, 'annotate': False, 'no_cuda': False}
        
        -------- Configuring Module: cuda --------
        Microsoft Visual C++ 14.0 is required. Get it with "Microsoft Visual C++ Build Tools": https://visualstudio.microsoft.com/downloads/
        
        ************************************************************
        * CuPy Configuration Summary                               *
        ************************************************************
        
        Build Environment:
          Include directories: ['C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v10.0\\include', 'C:\\Program Files\\NVIDIA Corporation\\NvToolsExt\\include']
          Library directories: ['C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v10.0\\bin', 'C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v10.0\\lib\\x64', 'C:\\Program Files\\NVIDIA Corporation\\NvToolsExt\\lib\\x64']
          nvcc command       : ['C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v10.0\\bin/nvcc.exe']
        
        Environment Variables:
          CFLAGS          : (none)
          LDFLAGS         : (none)
          LIBRARY_PATH    : (none)
          CUDA_PATH       : C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0
          NVTOOLSEXT_PATH : C:\Program Files\NVIDIA Corporation\NvToolsExt\
          NVCC            : (none)
        
        Modules:
          cuda      : No
            -> Include files not found: ['cublas_v2.h', 'cuda.h', 'cuda_profiler_api.h', 'cuda_runtime.h', 'cufft.h', 'curand.h', 'cusparse.h', 'nvrtc.h']
            -> Check your CFLAGS environment variable.
        
        ERROR: CUDA could not be found on your system.
        Please refer to the Installation Guide for details:
        https://docs-cupy.chainer.org/en/stable/install.html
        
        ************************************************************
        
        Traceback (most recent call last):
          File "<string>", line 1, in <module>
          File "C:\Users\FLAMES~1\AppData\Local\Temp\pip-install-ghow8_pv\cupy\setup.py", line 120, in <module>
            ext_modules = cupy_setup_build.get_ext_modules()
          File "C:\Users\FLAMES~1\AppData\Local\Temp\pip-install-ghow8_pv\cupy\cupy_setup_build.py", line 632, in get_ext_modules
            extensions = make_extensions(arg_options, compiler, use_cython)
          File "C:\Users\FLAMES~1\AppData\Local\Temp\pip-install-ghow8_pv\cupy\cupy_setup_build.py", line 387, in make_extensions
            raise Exception('Your CUDA environment is invalid. '
        Exception: Your CUDA environment is invalid. Please check above error log.
        ----------------------------------------
    ERROR: Command "python setup.py egg_info" failed with error code 1 in C:\Users\FLAMES~1\AppData\Local\Temp\pip-install-ghow8_pv\cupy\
    
    opened by f1am3d 3
  • Smoothing twice

    Smoothing twice

    Within the paper, I can only see smoothing mentioned once. However in the implementation smoothing is performed twice in photo_smooth.py and smooth_filter.py.

    Am I misunderstanding the paper/implementation regarding the second smoothing technique, or is this an addition made? If so, can you explain why this was added?

    opened by wesleyw72 3
  • Torch models to pytorch models, bug fix, CPU support, etc

    Torch models to pytorch models, bug fix, CPU support, etc

    This PR:

    • Convert torch models to pytorch models (listed in TODOs in the origin code) and converter.py shows how it was done. The pytorch model leaves in the submodule PhotoWCTModels which makes it easier to download from a server as https://github.com/NVIDIA/FastPhotoStyle/issues/15 suggested.

    • The models are refactored into less and clear classes. The layers are named according to the origin paper.

    • Fix a bug in Propagator. It fails to process images with alpha channels because it does not open them with RGB mode.

    • CPU support for PhotoWCT. PhotoWCT can work in CPU mode without using .cuda(). This could make it ~10x slower (not too slow yet) but more friendly for those without GPUs or GPUs with less memory as https://github.com/NVIDIA/FastPhotoStyle/issues/17

    I'm sorry that some codes in photo_wct.py are changed by the (PEP8) code formatter, so not too much of them are actually modified.

    Current code are tested. They can work well as before.

    opened by suquark 3
  • no module named segmentation.dataset

    no module named segmentation.dataset

    Hello, thanks for your great work I face not found the dataset when run with demo_example3.sh. Could you guide me where to found this seg.dataset folder. https://github.com/CSAILVision/semantic-segmentation-pytorch looks dont have this folder .

    Thanks!

    image

    opened by juneleung 0
  • Removed a literal comparison pitfall from the code

    Removed a literal comparison pitfall from the code

    The problem The code was comparing booleans using the operator '==', where in Python the indicated is to use the operator 'is', otherwise we would fall into a literal comparison pitfall. This pitfall was detected using Pylint and generated the following message error code and message: Pylint code: C0121

    Comparison 'styl_seg.size == False' should be 'styl_seg.size is False' if checking for the singleton value False, or 'not styl_seg.size' if testing for falsiness

    Solution Removed the '==' operator and changed it to 'is'

    opened by NaelsonDouglas 0
  • Docker build fails

    Docker build fails

    Hi! The docker image fails to build. We get this issue during step 12:

    Step 12/16 : RUN conda install -y -c anaconda pip ---> Running in 15c22eca2c92 Collecting package metadata (repodata.json): ...working... done Solving environment: ...working... The environment is inconsistent, please check the package plan carefully The following packages are causing the inconsistency:

    • https://repo.continuum.io/pkgs/main/linux-64/conda-verify-2.0.0-py36h98955d8_0.tar.bz2/linux-64::conda-verify==2.0.0=py36h98955d8_0
    • https://repo.continuum.io/pkgs/main/linux-64/dask-core-0.15.3-py36h10e6167_0.tar.bz2/linux-64::dask-core==0.15.3=py36h10e6167_0
    • https://repo.continuum.io/pkgs/main/linux-64/cython-0.26.1-py36h21c49d0_0.tar.bz2/linux-64::cython==0.26.1=py36h21c49d0_0
    • https://repo.continuum.io/pkgs/main/linux-64/dask-0.15.3-py36hdc2c8aa_0.tar.bz2/linux-64::dask==0.15.3=py36hdc2c8aa_0
    • https://repo.continuum.io/pkgs/main/linux-64/snowballstemmer-1.2.1-py36h6febd40_0.tar.bz2/linux-64::snowballstemmer==1.2.1=py36h6febd40_0
    • https://repo.continuum.io/pkgs/main/linux-64/greenlet-0.4.12-py36h2d503a6_0.tar.bz2/linux-64::greenlet==0.4.12=py36h2d503a6_0
    • https://repo.continuum.io/pkgs/main/linux-64/ipython_genutils-0.2.0-py36hb52b0d5_0.tar.bz2/linux-64::ipython_genutils==0.2.0=py36hb52b0d5_0
    • https://repo.continuum.io/pkgs/main/linux-64/cryptography-2.0.3-py36ha225213_1.tar.bz2/linux-64::cryptography==2.0.3=py36ha225213_1
    • https://repo.continuum.io/pkgs/main/linux-64/xlrd-1.1.0-py36h1db9f0c_1.tar.bz2/linux-64::xlrd==1.1.0=py36h1db9f0c_1
    • https://repo.continuum.io/pkgs/main/linux-64/pep8-1.7.0-py36h26ade29_0.tar.bz2/linux-64::pep8==1.7.0=py36h26ade29_0
    • https://repo.continuum.io/pkgs/main/linux-64/astroid-1.5.3-py36hbdb9df2_0.tar.bz2/linux-64::astroid==1.5.3=py36hbdb9df2_0
    • https://repo.continuum.io/pkgs/main/linux-64/contextlib2-0.5.5-py36h6c84a62_0.tar.bz2/linux-64::contextlib2==0.5.5=py36h6c84a62_0
    • https://repo.continuum.io/pkgs/main/linux-64/patsy-0.4.1-py36ha3be15e_0.tar.bz2/linux-64::patsy==0.4.1=py36ha3be15e_0
    • https://repo.continuum.io/pkgs/main/linux-64/h5py-2.7.0-py36he81ebca_1.tar.bz2/linux-64::h5py==2.7.0=py36he81ebca_1
    • https://repo.continuum.io/pkgs/main/linux-64/html5lib-0.999999999-py36h2cfc398_0.tar.bz2/linux-64::html5lib==0.999999999=py36h2cfc398_0
    • https://repo.continuum.io/pkgs/main/linux-64/astropy-2.0.2-py36ha51211e_4.tar.bz2/linux-64::astropy==2.0.2=py36ha51211e_4
    • https://repo.continuum.io/pkgs/main/linux-64/lazy-object-proxy-1.3.1-py36h10fcdad_0.tar.bz2/linux-64::lazy-object-proxy==1.3.1=py36h10fcdad_0
    • https://repo.continuum.io/pkgs/main/linux-64/jupyter_client-5.1.0-py36h614e9ea_0.tar.bz2/linux-64::jupyter_client==5.1.0=py36h614e9ea_0
    • https://repo.continuum.io/pkgs/main/linux-64/filelock-2.0.12-py36hacfa1f5_0.tar.bz2/linux-64::filelock==2.0.12=py36hacfa1f5_0
    • https://repo.continuum.io/pkgs/main/linux-64/qtawesome-0.4.4-py36h609ed8c_0.tar.bz2/linux-64::qtawesome==0.4.4=py36h609ed8c_0
    • https://repo.continuum.io/pkgs/main/linux-64/mpmath-0.19-py36h8cc018b_2.tar.bz2/linux-64::mpmath==0.19=py36h8cc018b_2
    • https://repo.continuum.io/pkgs/main/linux-64/bkcharts-0.2-py36h735825a_0.tar.bz2/linux-64::bkcharts==0.2=py36h735825a_0
    • https://repo.continuum.io/pkgs/main/linux-64/certifi-2017.7.27.1-py36h8b7b77e_0.tar.bz2/linux-64::certifi==2017.7.27.1=py36h8b7b77e_0
    • https://repo.continuum.io/pkgs/main/linux-64/ipywidgets-7.0.0-py36h7b55c3a_0.tar.bz2/linux-64::ipywidgets==7.0.0=py36h7b55c3a_0
    • https://repo.continuum.io/pkgs/main/linux-64/click-6.7-py36h5253387_0.tar.bz2/linux-64::click==6.7=py36h5253387_0
    • https://repo.continuum.io/pkgs/main/linux-64/docutils-0.14-py36hb0f60f5_0.tar.bz2/linux-64::docutils==0.14=py36hb0f60f5_0
    • https://repo.continuum.io/pkgs/main/linux-64/tblib-1.3.2-py36h34cf8b6_0.tar.bz2/linux-64::tblib==1.3.2=py36h34cf8b6_0
    • https://repo.continuum.io/pkgs/main/linux-64/singledispatch-3.4.0.3-py36h7a266c3_0.tar.bz2/linux-64::singledispatch==3.4.0.3=py36h7a266c3_0
    • https://repo.continuum.io/pkgs/main/linux-64/asn1crypto-0.22.0-py36h265ca7c_1.tar.bz2/linux-64::asn1crypto==0.22.0=py36h265ca7c_1
    • https://repo.continuum.io/pkgs/main/linux-64/jedi-0.10.2-py36h552def0_0.tar.bz2/linux-64::jedi==0.10.2=py36h552def0_0
    • https://repo.continuum.io/pkgs/main/linux-64/distributed-1.19.1-py36h25f3894_0.tar.bz2/linux-64::distributed==1.19.1=py36h25f3894_0
    • https://repo.continuum.io/pkgs/main/linux-64/pycparser-2.18-py36hf9f622e_1.tar.bz2/linux-64::pycparser==2.18=py36hf9f622e_1
    • https://repo.continuum.io/pkgs/main/linux-64/pyodbc-4.0.17-py36h999153c_0.tar.bz2/linux-64::pyodbc==4.0.17=py36h999153c_0
    • https://repo.continuum.io/pkgs/main/linux-64/qt-5.6.2-h974d657_12.tar.bz2/linux-64::qt==5.6.2=h974d657_12
    • https://repo.continuum.io/pkgs/main/linux-64/openssl-1.0.2l-h077ae2c_5.tar.bz2/linux-64::openssl==1.0.2l=h077ae2c_5
    • https://repo.continuum.io/pkgs/main/linux-64/beautifulsoup4-4.6.0-py36h49b8c8c_1.tar.bz2/linux-64::beautifulsoup4==4.6.0=py36h49b8c8c_1
    • https://repo.continuum.io/pkgs/main/linux-64/llvmlite-0.20.0-py36_0.tar.bz2/linux-64::llvmlite==0.20.0=py36_0
    • https://repo.continuum.io/pkgs/main/linux-64/scikit-image-0.13.0-py36had3c07a_1.tar.bz2/linux-64::scikit-image==0.13.0=py36had3c07a_1
    • https://repo.continuum.io/pkgs/main/linux-64/ipykernel-4.6.1-py36hbf841aa_0.tar.bz2/linux-64::ipykernel==4.6.1=py36hbf841aa_0
    • https://repo.continuum.io/pkgs/main/linux-64/nltk-3.2.4-py36h1a0979f_0.tar.bz2/linux-64::nltk==3.2.4=py36h1a0979f_0
    • https://repo.continuum.io/pkgs/main/linux-64/jupyterlab_launcher-0.4.0-py36h4d8058d_0.tar.bz2/linux-64::jupyterlab_launcher==0.4.0=py36h4d8058d_0
    • https://repo.continuum.io/pkgs/main/linux-64/mistune-0.7.4-py36hbab8784_0.tar.bz2/linux-64::mistune==0.7.4=py36hbab8784_0
    • https://repo.continuum.io/pkgs/main/linux-64/_ipyw_jlab_nb_ext_conf-0.1.0-py36he11e457_0.tar.bz2/linux-64::_ipyw_jlab_nb_ext_conf==0.1.0=py36he11e457_0
    • https://repo.continuum.io/pkgs/main/linux-64/wheel-0.29.0-py36he7f4e38_1.tar.bz2/linux-64::wheel==0.29.0=py36he7f4e38_1
    • https://repo.continuum.io/pkgs/main/linux-64/bitarray-0.8.1-py36h5834eb8_0.tar.bz2/linux-64::bitarray==0.8.1=py36h5834eb8_0
    • https://repo.continuum.io/pkgs/main/linux-64/ipython-6.1.0-py36hc72a948_1.tar.bz2/linux-64::ipython==6.1.0=py36hc72a948_1
    • https://repo.continuum.io/pkgs/main/linux-64/pywavelets-0.5.2-py36he602eb0_0.tar.bz2/linux-64::pywavelets==0.5.2=py36he602eb0_0
    • https://repo.continuum.io/pkgs/main/linux-64/six-1.11.0-py36h372c433_1.tar.bz2/linux-64::six==1.11.0=py36h372c433_1
    • https://repo.continuum.io/pkgs/main/linux-64/bottleneck-1.2.1-py36haac1ea0_0.tar.bz2/linux-64::bottleneck==1.2.1=py36haac1ea0_0
    • https://repo.continuum.io/pkgs/main/linux-64/isort-4.2.15-py36had401c0_0.tar.bz2/linux-64::isort==4.2.15=py36had401c0_0
    • https://repo.continuum.io/pkgs/main/linux-64/gmpy2-2.0.8-py36h55090d7_1.tar.bz2/linux-64::gmpy2==2.0.8=py36h55090d7_1
    • https://repo.continuum.io/pkgs/main/linux-64/markupsafe-1.0-py36hd9260cd_1.tar.bz2/linux-64::markupsafe==1.0=py36hd9260cd_1
    • https://repo.continuum.io/pkgs/main/linux-64/get_terminal_size-1.0.0-haa9412d_0.tar.bz2/linux-64::get_terminal_size==1.0.0=haa9412d_0
    • https://repo.continuum.io/pkgs/main/linux-64/sympy-1.1.1-py36hc6d1c1c_0.tar.bz2/linux-64::sympy==1.1.1=py36hc6d1c1c_0
    • https://repo.continuum.io/pkgs/main/linux-64/odo-0.5.1-py36h90ed295_0.tar.bz2/linux-64::odo==0.5.1=py36h90ed295_0
    • https://repo.continuum.io/pkgs/main/linux-64/msgpack-python-0.4.8-py36hec4c5d1_0.tar.bz2/linux-64::msgpack-python==0.4.8=py36hec4c5d1_0
    • https://repo.continuum.io/pkgs/main/linux-64/olefile-0.44-py36h79f9f78_0.tar.bz2/linux-64::olefile==0.44=py36h79f9f78_0
    • https://repo.continuum.io/pkgs/main/linux-64/tornado-4.5.2-py36h1283b2a_0.tar.bz2/linux-64::tornado==4.5.2=py36h1283b2a_0
    • https://repo.continuum.io/pkgs/main/linux-64/sortedcollections-0.5.3-py36h3c761f9_0.tar.bz2/linux-64::sortedcollections==0.5.3=py36h3c761f9_0
    • https://repo.continuum.io/pkgs/main/linux-64/flask-cors-3.0.3-py36h2d857d3_0.tar.bz2/linux-64::flask-cors==3.0.3=py36h2d857d3_0
    • https://repo.continuum.io/pkgs/main/linux-64/pysocks-1.6.7-py36hd97a5b1_1.tar.bz2/linux-64::pysocks==1.6.7=py36hd97a5b1_1
    • https://repo.continuum.io/pkgs/main/linux-64/sphinxcontrib-1.0-py36h6d0f590_1.tar.bz2/linux-64::sphinxcontrib==1.0=py36h6d0f590_1
    • https://repo.continuum.io/pkgs/main/linux-64/pkginfo-1.4.1-py36h215d178_1.tar.bz2/linux-64::pkginfo==1.4.1=py36h215d178_1
    • https://repo.continuum.io/pkgs/main/linux-64/sphinx-1.6.3-py36he5f0bdb_0.tar.bz2/linux-64::sphinx==1.6.3=py36he5f0bdb_0
    • https://repo.continuum.io/pkgs/main/linux-64/mccabe-0.6.1-py36h5ad9710_1.tar.bz2/linux-64::mccabe==0.6.1=py36h5ad9710_1
    • https://repo.continuum.io/pkgs/main/linux-64/simplegeneric-0.8.1-py36h2cb9092_0.tar.bz2/linux-64::simplegeneric==0.8.1=py36h2cb9092_0
    • https://repo.continuum.io/pkgs/main/linux-64/itsdangerous-0.24-py36h93cc618_1.tar.bz2/linux-64::itsdangerous==0.24=py36h93cc618_1
    • https://repo.continuum.io/pkgs/main/linux-64/xlsxwriter-1.0.2-py36h3de1aca_0.tar.bz2/linux-64::xlsxwriter==1.0.2=py36h3de1aca_0
    • https://repo.continuum.io/pkgs/main/linux-64/pandas-0.20.3-py36h842e28d_2.tar.bz2/linux-64::pandas==0.20.3=py36h842e28d_2
    • https://repo.continuum.io/pkgs/main/linux-64/requests-2.18.4-py36he2e5f8d_1.tar.bz2/linux-64::requests==2.18.4=py36he2e5f8d_1
    • https://repo.continuum.io/pkgs/main/linux-64/pytest-3.2.1-py36h11ad3bb_1.tar.bz2/linux-64::pytest==3.2.1=py36h11ad3bb_1
    • https://repo.continuum.io/pkgs/main/linux-64/werkzeug-0.12.2-py36hc703753_0.tar.bz2/linux-64::werkzeug==0.12.2=py36hc703753_0
    • https://repo.continuum.io/pkgs/main/linux-64/jupyter_core-4.3.0-py36h357a921_0.tar.bz2/linux-64::jupyter_core==4.3.0=py36h357a921_0
    • https://repo.continuum.io/pkgs/main/linux-64/pixman-0.34.0-h83dc358_2.tar.bz2/linux-64::pixman==0.34.0=h83dc358_2
    • https://repo.continuum.io/pkgs/main/linux-64/qtconsole-4.3.1-py36h8f73b5b_0.tar.bz2/linux-64::qtconsole==4.3.1=py36h8f73b5b_0
    • https://repo.continuum.io/pkgs/main/linux-64/datashape-0.5.4-py36h3ad6b5c_0.tar.bz2/linux-64::datashape==0.5.4=py36h3ad6b5c_0
    • https://repo.continuum.io/pkgs/main/linux-64/nbconvert-5.3.1-py36hb41ffb7_0.tar.bz2/linux-64::nbconvert==5.3.1=py36hb41ffb7_0
    • https://repo.continuum.io/pkgs/main/linux-64/sqlalchemy-1.1.13-py36hfb5efd7_0.tar.bz2/linux-64::sqlalchemy==1.1.13=py36hfb5efd7_0
    • https://repo.continuum.io/pkgs/main/linux-64/pylint-1.7.4-py36hb9d4533_0.tar.bz2/linux-64::pylint==1.7.4=py36hb9d4533_0
    • https://repo.continuum.io/pkgs/main/linux-64/bokeh-0.12.10-py36hbb0e44a_0.tar.bz2/linux-64::bokeh==0.12.10=py36hbb0e44a_0
    • https://repo.continuum.io/pkgs/main/linux-64/imageio-2.2.0-py36he555465_0.tar.bz2/linux-64::imageio==2.2.0=py36he555465_0
    • https://repo.continuum.io/pkgs/main/linux-64/chardet-3.0.4-py36h0f667ec_1.tar.bz2/linux-64::chardet==3.0.4=py36h0f667ec_1
    • https://repo.continuum.io/pkgs/main/linux-64/spyder-3.2.4-py36hbe6152b_0.tar.bz2/linux-64::spyder==3.2.4=py36hbe6152b_0
    • https://repo.continuum.io/pkgs/main/linux-64/testpath-0.3.1-py36h8cadb63_0.tar.bz2/linux-64::testpath==0.3.1=py36h8cadb63_0
    • https://repo.continuum.io/pkgs/main/linux-64/flask-0.12.2-py36hb24657c_0.tar.bz2/linux-64::flask==0.12.2=py36hb24657c_0
    • https://repo.continuum.io/pkgs/main/linux-64/jdcal-1.3-py36h4c697fb_0.tar.bz2/linux-64::jdcal==1.3=py36h4c697fb_0
    • https://repo.continuum.io/pkgs/main/linux-64/anaconda-client-1.6.5-py36h19c0dcd_0.tar.bz2/linux-64::anaconda-client==1.6.5=py36h19c0dcd_0
    • https://repo.continuum.io/pkgs/main/linux-64/pandocfilters-1.4.2-py36ha6701b7_1.tar.bz2/linux-64::pandocfilters==1.4.2=py36ha6701b7_1
    • https://repo.continuum.io/pkgs/main/linux-64/pygments-2.2.0-py36h0d3125c_0.tar.bz2/linux-64::pygments==2.2.0=py36h0d3125c_0
    • https://repo.continuum.io/pkgs/main/linux-64/webencodings-0.5.1-py36h800622e_1.tar.bz2/linux-64::webencodings==0.5.1=py36h800622e_1
    • https://repo.continuum.io/pkgs/main/linux-64/qtpy-1.3.1-py36h3691cc8_0.tar.bz2/linux-64::qtpy==1.3.1=py36h3691cc8_0
    • https://repo.continuum.io/pkgs/main/linux-64/pexpect-4.2.1-py36h3b9d41b_0.tar.bz2/linux-64::pexpect==4.2.1=py36h3b9d41b_0
    • https://repo.continuum.io/pkgs/main/linux-64/pyyaml-3.12-py36hafb9ca4_1.tar.bz2/linux-64::pyyaml==3.12=py36hafb9ca4_1
    • https://repo.continuum.io/pkgs/main/linux-64/python-3.6.3-hc9025b9_1.tar.bz2/linux-64::python==3.6.3=hc9025b9_1
    • https://repo.continuum.io/pkgs/main/linux-64/terminado-0.6-py36ha25a19f_0.tar.bz2/linux-64::terminado==0.6=py36ha25a19f_0
    • https://repo.continuum.io/pkgs/main/linux-64/jupyter-1.0.0-py36h9896ce5_0.tar.bz2/linux-64::jupyter==1.0.0=py36h9896ce5_0
    • https://repo.continuum.io/pkgs/main/linux-64/et_xmlfile-1.0.1-py36hd6bccc3_0.tar.bz2/linux-64::et_xmlfile==1.0.1=py36hd6bccc3_0
    • https://repo.continuum.io/pkgs/main/linux-64/notebook-5.0.0-py36h0b20546_2.tar.bz2/linux-64::notebook==5.0.0=py36h0b20546_2
    • https://repo.continuum.io/pkgs/main/linux-64/ptyprocess-0.5.2-py36h69acd42_0.tar.bz2/linux-64::ptyprocess==0.5.2=py36h69acd42_0
    • https://repo.continuum.io/pkgs/main/linux-64/pytz-2017.2-py36hc2ccc2a_1.tar.bz2/linux-64::pytz==2017.2=py36hc2ccc2a_1
    • https://repo.continuum.io/pkgs/main/linux-64/cycler-0.10.0-py36h93f1223_0.tar.bz2/linux-64::cycler==0.10.0=py36h93f1223_0
    • https://repo.continuum.io/pkgs/main/linux-64/sphinxcontrib-websupport-1.0.1-py36hb5cb234_1.tar.bz2/linux-64::sphinxcontrib-websupport==1.0.1=py36hb5cb234_1
    • https://repo.continuum.io/pkgs/main/linux-64/pyqt-5.6.0-py36h0386399_5.tar.bz2/linux-64::pyqt==5.6.0=py36h0386399_5
    • https://repo.continuum.io/pkgs/main/linux-64/cloudpickle-0.4.0-py36h30f8c20_0.tar.bz2/linux-64::cloudpickle==0.4.0=py36h30f8c20_0
    • https://repo.continuum.io/pkgs/main/linux-64/pyflakes-1.6.0-py36h7bd6a15_0.tar.bz2/linux-64::pyflakes==1.6.0=py36h7bd6a15_0
    • https://repo.continuum.io/pkgs/main/linux-64/numpydoc-0.7.0-py36h18f165f_0.tar.bz2/linux-64::numpydoc==0.7.0=py36h18f165f_0
    • https://repo.continuum.io/pkgs/main/linux-64/pickleshare-0.7.4-py36h63277f8_0.tar.bz2/linux-64::pickleshare==0.7.4=py36h63277f8_0
    • https://repo.continuum.io/pkgs/main/linux-64/wcwidth-0.1.7-py36hdf4376a_0.tar.bz2/linux-64::wcwidth==0.1.7=py36hdf4376a_0
    • https://repo.continuum.io/pkgs/main/linux-64/sip-4.18.1-py36h51ed4ed_2.tar.bz2/linux-64::sip==4.18.1=py36h51ed4ed_2
    • https://repo.continuum.io/pkgs/main/linux-64/navigator-updater-0.1.0-py36h14770f7_0.tar.bz2/linux-64::navigator-updater==0.1.0=py36h14770f7_0
    • https://repo.continuum.io/pkgs/main/linux-64/babel-2.5.0-py36h7d14adf_0.tar.bz2/linux-64::babel==2.5.0=py36h7d14adf_0
    • https://repo.continuum.io/pkgs/main/linux-64/nbformat-4.4.0-py36h31c9010_0.tar.bz2/linux-64::nbformat==4.4.0=py36h31c9010_0
    • https://repo.continuum.io/pkgs/main/linux-64/zict-0.1.3-py36h3a3bf81_0.tar.bz2/linux-64::zict==0.1.3=py36h3a3bf81_0
    • https://repo.continuum.io/pkgs/main/linux-64/statsmodels-0.8.0-py36h8533d0b_0.tar.bz2/linux-64::statsmodels==0.8.0=py36h8533d0b_0
    • https://repo.continuum.io/pkgs/main/linux-64/pycurl-7.43.0-py36h5e72054_3.tar.bz2/linux-64::pycurl==7.43.0=py36h5e72054_3
    • https://repo.continuum.io/pkgs/main/linux-64/seaborn-0.8.0-py36h197244f_0.tar.bz2/linux-64::seaborn==0.8.0=py36h197244f_0
    • https://repo.continuum.io/pkgs/main/linux-64/pillow-4.2.1-py36h9119f52_0.tar.bz2/linux-64::pillow==4.2.1=py36h9119f52_0
    • https://repo.continuum.io/pkgs/main/linux-64/pycrypto-2.6.1-py36h6998063_1.tar.bz2/linux-64::pycrypto==2.6.1=py36h6998063_1
    • https://repo.continuum.io/pkgs/main/linux-64/mkl-service-1.1.2-py36h17a0993_4.tar.bz2/linux-64::mkl-service==1.1.2=py36h17a0993_4
    • https://repo.continuum.io/pkgs/main/linux-64/jupyterlab-0.27.0-py36h86377d0_2.tar.bz2/linux-64::jupyterlab==0.27.0=py36h86377d0_2
    • https://repo.continuum.io/pkgs/main/linux-64/conda-build-3.0.27-py36h940a66d_0.tar.bz2/linux-64::conda-build==3.0.27=py36h940a66d_0
    • https://repo.continuum.io/pkgs/main/linux-64/jupyter_console-5.2.0-py36he59e554_1.tar.bz2/linux-64::jupyter_console==5.2.0=py36he59e554_1
    • https://repo.continuum.io/pkgs/main/linux-64/numexpr-2.6.2-py36hdd3393f_1.tar.bz2/linux-64::numexpr==2.6.2=py36hdd3393f_1
    • https://repo.continuum.io/pkgs/main/linux-64/nose-1.3.7-py36hcdf7029_2.tar.bz2/linux-64::nose==1.3.7=py36hcdf7029_2
    • https://repo.continuum.io/pkgs/main/linux-64/wrapt-1.10.11-py36h28b7045_0.tar.bz2/linux-64::wrapt==1.10.11=py36h28b7045_0
    • https://repo.continuum.io/pkgs/main/linux-64/xlwt-1.3.0-py36h7b00a1f_0.tar.bz2/linux-64::xlwt==1.3.0=py36h7b00a1f_0
    • https://repo.continuum.io/pkgs/main/linux-64/jinja2-2.9.6-py36h489bce4_1.tar.bz2/linux-64::jinja2==2.9.6=py36h489bce4_1
    • https://repo.continuum.io/pkgs/main/linux-64/decorator-4.1.2-py36hd076ac8_0.tar.bz2/linux-64::decorator==4.1.2=py36hd076ac8_0
    • https://repo.continuum.io/pkgs/main/linux-64/packaging-16.8-py36ha668100_1.tar.bz2/linux-64::packaging==16.8=py36ha668100_1
    • https://repo.continuum.io/pkgs/main/linux-64/harfbuzz-1.5.0-h2545bd6_0.tar.bz2/linux-64::harfbuzz==1.5.0=h2545bd6_0
    • https://repo.continuum.io/pkgs/main/linux-64/scipy-0.19.1-py36h9976243_3.tar.bz2/linux-64::scipy==0.19.1=py36h9976243_3
    • https://repo.continuum.io/pkgs/main/linux-64/numpy-1.13.3-py36ha12f23b_0.tar.bz2/linux-64::numpy==1.13.3=py36ha12f23b_0
    • https://repo.continuum.io/pkgs/main/linux-64/typing-3.6.2-py36h7da032a_0.tar.bz2/linux-64::typing==3.6.2=py36h7da032a_0
    • https://repo.continuum.io/pkgs/main/linux-64/pango-1.40.11-h8191d47_0.tar.bz2/linux-64::pango==1.40.11=h8191d47_0
    • https://repo.continuum.io/pkgs/main/linux-64/entrypoints-0.2.3-py36h1aec115_2.tar.bz2/linux-64::entrypoints==0.2.3=py36h1aec115_2
    • https://repo.continuum.io/pkgs/main/linux-64/ruamel_yaml-0.11.14-py36ha2fb22d_2.tar.bz2/linux-64::ruamel_yaml==0.11.14=py36ha2fb22d_2
    • https://repo.continuum.io/pkgs/main/linux-64/pytables-3.4.2-py36h3b5282a_2.tar.bz2/linux-64::pytables==3.4.2=py36h3b5282a_2
    • https://repo.continuum.io/pkgs/main/linux-64/pyzmq-16.0.2-py36h3b0cf96_2.tar.bz2/linux-64::pyzmq==16.0.2=py36h3b0cf96_2
    • https://repo.continuum.io/pkgs/main/linux-64/locket-0.2.0-py36h787c0ad_1.tar.bz2/linux-64::locket==0.2.0=py36h787c0ad_1
    • https://repo.continuum.io/pkgs/main/linux-64/toolz-0.8.2-py36h81f2dff_0.tar.bz2/linux-64::toolz==0.8.2=py36h81f2dff_0
    • https://repo.continuum.io/pkgs/main/linux-64/anaconda-navigator-1.6.9-py36h11ddaaa_0.tar.bz2/linux-64::anaconda-navigator==1.6.9=py36h11ddaaa_0
    • https://repo.continuum.io/pkgs/main/linux-64/heapdict-1.0.0-py36h79797d7_0.tar.bz2/linux-64::heapdict==1.0.0=py36h79797d7_0
    • https://repo.continuum.io/pkgs/main/linux-64/setuptools-36.5.0-py36he42e2e1_0.tar.bz2/linux-64::setuptools==36.5.0=py36he42e2e1_0
    • https://repo.continuum.io/pkgs/main/linux-64/scikit-learn-0.19.1-py36h7aa7ec6_0.tar.bz2/linux-64::scikit-learn==0.19.1=py36h7aa7ec6_0
    • https://repo.continuum.io/pkgs/main/linux-64/curl-7.55.1-hcb0b314_2.tar.bz2/linux-64::curl==7.55.1=hcb0b314_2
    • https://repo.continuum.io/pkgs/main/linux-64/multipledispatch-0.4.9-py36h41da3fb_0.tar.bz2/linux-64::multipledispatch==0.4.9=py36h41da3fb_0
    • https://repo.continuum.io/pkgs/main/linux-64/lxml-4.1.0-py36h5b66e50_0.tar.bz2/linux-64::lxml==4.1.0=py36h5b66e50_0
    • https://repo.continuum.io/pkgs/main/linux-64/bleach-2.0.0-py36h688b259_0.tar.bz2/linux-64::bleach==2.0.0=py36h688b259_0
    • https://repo.continuum.io/pkgs/main/linux-64/clyent-1.2.2-py36h7e57e65_1.tar.bz2/linux-64::clyent==1.2.2=py36h7e57e65_1
    • https://repo.continuum.io/pkgs/main/linux-64/glob2-0.5-py36h2c1b292_1.tar.bz2/linux-64::glob2==0.5=py36h2c1b292_1
    • https://repo.continuum.io/pkgs/main/linux-64/boto-2.48.0-py36h6e4cd66_1.tar.bz2/linux-64::boto==2.48.0=py36h6e4cd66_1
    • https://repo.continuum.io/pkgs/main/linux-64/cairo-1.14.10-haa5651f_5.tar.bz2/linux-64::cairo==1.14.10=haa5651f_5
    • https://repo.continuum.io/pkgs/main/linux-64/py-1.4.34-py36h0712aa3_1.tar.bz2/linux-64::py==1.4.34=py36h0712aa3_1
    • https://repo.continuum.io/pkgs/main/linux-64/pip-9.0.1-py36h8ec8b28_3.tar.bz2/linux-64::pip==9.0.1=py36h8ec8b28_3
    • https://repo.continuum.io/pkgs/main/linux-64/fastcache-1.0.2-py36h5b0c431_0.tar.bz2/linux-64::fastcache==1.0.2=py36h5b0c431_0
    • https://repo.continuum.io/pkgs/main/linux-64/gevent-1.2.2-py36h2fe25dc_0.tar.bz2/linux-64::gevent==1.2.2=py36h2fe25dc_0
    • https://repo.continuum.io/pkgs/main/linux-64/imagesize-0.7.1-py36h52d8127_0.tar.bz2/linux-64::imagesize==0.7.1=py36h52d8127_0
    • https://repo.continuum.io/pkgs/main/linux-64/openpyxl-2.4.8-py36h41dd2a8_1.tar.bz2/linux-64::openpyxl==2.4.8=py36h41dd2a8_1
    • https://repo.continuum.io/pkgs/main/linux-64/networkx-2.0-py36h7e96fb8_0.tar.bz2/linux-64::networkx==2.0=py36h7e96fb8_0
    • https://repo.continuum.io/pkgs/main/linux-64/pathlib2-2.3.0-py36h49efa8e_0.tar.bz2/linux-64::pathlib2==2.3.0=py36h49efa8e_0
    • https://repo.continuum.io/pkgs/main/linux-64/blaze-0.11.3-py36h4e06776_0.tar.bz2/linux-64::blaze==0.11.3=py36h4e06776_0
    • https://repo.continuum.io/pkgs/main/linux-64/libxcb-1.12-h84ff03f_3.tar.bz2/linux-64::libxcb==1.12=h84ff03f_3
    • https://repo.continuum.io/pkgs/main/linux-64/alabaster-0.7.10-py36h306e16b_0.tar.bz2/linux-64::alabaster==0.7.10=py36h306e16b_0
    • https://repo.continuum.io/pkgs/main/linux-64/matplotlib-2.1.0-py36hba5de38_0.tar.bz2/linux-64::matplotlib==2.1.0=py36hba5de38_0
    • https://repo.continuum.io/pkgs/main/linux-64/pycodestyle-2.3.1-py36hf609f19_0.tar.bz2/linux-64::pycodestyle==2.3.1=py36hf609f19_0
    • https://repo.continuum.io/pkgs/main/linux-64/prompt_toolkit-1.0.15-py36h17d85b1_0.tar.bz2/linux-64::prompt_toolkit==1.0.15=py36h17d85b1_0
    • https://repo.continuum.io/pkgs/main/linux-64/numba-0.35.0-np113py36_10.tar.bz2/linux-64::numba==0.35.0=np113py36_10
    • https://repo.continuum.io/pkgs/main/linux-64/anaconda-5.0.1-py36hd30a520_1.tar.bz2/linux-64::anaconda==5.0.1=py36hd30a520_1
    • https://repo.continuum.io/pkgs/main/linux-64/widgetsnbextension-3.0.2-py36hd01bb71_1.tar.bz2/linux-64::widgetsnbextension==3.0.2=py36hd01bb71_1
    • https://repo.continuum.io/pkgs/main/linux-64/unicodecsv-0.14.1-py36ha668878_0.tar.bz2/linux-64::unicodecsv==0.14.1=py36ha668878_0
    • https://repo.continuum.io/pkgs/main/linux-64/pyparsing-2.2.0-py36hee85983_1.tar.bz2/linux-64::pyparsing==2.2.0=py36hee85983_1
    • https://repo.continuum.io/pkgs/main/linux-64/cffi-1.10.0-py36had8d393_1.tar.bz2/linux-64::cffi==1.10.0=py36had8d393_1
    • https://repo.continuum.io/pkgs/main/linux-64/pyopenssl-17.2.0-py36h5cc804b_0.tar.bz2/linux-64::pyopenssl==17.2.0=py36h5cc804b_0
    • https://repo.continuum.io/pkgs/main/linux-64/rope-0.10.5-py36h1f8c17e_0.tar.bz2/linux-64::rope==0.10.5=py36h1f8c17e_0
    • https://repo.continuum.io/pkgs/main/linux-64/cytoolz-0.8.2-py36h708bfd4_0.tar.bz2/linux-64::cytoolz==0.8.2=py36h708bfd4_0
    • https://repo.continuum.io/pkgs/main/linux-64/backports-1.0-py36hfa02d7e_1.tar.bz2/linux-64::backports==1.0=py36hfa02d7e_1
    • https://repo.continuum.io/pkgs/main/linux-64/urllib3-1.22-py36hbe7ace6_0.tar.bz2/linux-64::urllib3==1.22=py36hbe7ace6_0
    • https://repo.continuum.io/pkgs/main/linux-64/python-dateutil-2.6.1-py36h88d3b88_1.tar.bz2/linux-64::python-dateutil==2.6.1=py36h88d3b88_1
    • https://repo.continuum.io/pkgs/main/linux-64/sortedcontainers-1.5.7-py36hdf89491_0.tar.bz2/linux-64::sortedcontainers==1.5.7=py36hdf89491_0
    • https://repo.continuum.io/pkgs/main/linux-64/ply-3.10-py36hed35086_0.tar.bz2/linux-64::ply==3.10=py36hed35086_0
    • https://repo.continuum.io/pkgs/main/linux-64/psutil-5.4.0-py36h84c53db_0.tar.bz2/linux-64::psutil==5.4.0=py36h84c53db_0
    • https://repo.continuum.io/pkgs/main/linux-64/jsonschema-2.6.0-py36h006f8b5_0.tar.bz2/linux-64::jsonschema==2.6.0=py36h006f8b5_0
    • https://repo.continuum.io/pkgs/main/linux-64/path.py-10.3.1-py36he0c6f6d_0.tar.bz2/linux-64::path.py==10.3.1=py36he0c6f6d_0
    • https://repo.continuum.io/pkgs/main/linux-64/traitlets-4.3.2-py36h674d592_0.tar.bz2/linux-64::traitlets==4.3.2=py36h674d592_0
    • https://repo.continuum.io/pkgs/main/linux-64/anaconda-project-0.8.0-py36h29abdf5_0.tar.bz2/linux-64::anaconda-project==0.8.0=py36h29abdf5_0
    • https://repo.continuum.io/pkgs/main/linux-64/partd-0.3.8-py36h36fd896_0.tar.bz2/linux-64::partd==0.3.8=py36h36fd896_0
    • https://repo.continuum.io/pkgs/main/linux-64/backports.shutil_get_terminal_size-1.0.0-py36hfea85ff_2.tar.bz2/linux-64::backports.shutil_get_terminal_size==1.0.0=py36hfea85ff_2
    • https://repo.continuum.io/pkgs/main/linux-64/idna-2.6-py36h82fb2a8_1.tar.bz2/linux-64::idna==2.6=py36h82fb2a8_1
    • https://repo.continuum.io/pkgs/main/linux-64/colorama-0.3.9-py36h489cec4_0.tar.bz2/linux-64::colorama==0.3.9=py36h489cec4_0
    • https://repo.continuum.io/pkgs/main/linux-64/linux-64::ninja==1.8.2=py36h6bb024c_1
    • https://repo.continuum.io/pkgs/main/linux-64/linux-64::pycosat==0.6.3=py36h27cfd23_0
    • pytorch/noarch::torchvision==0.2.1=py_2
    • https://repo.continuum.io/pkgs/main/linux-64/linux-64::conda-package-handling==1.7.2=py36h03888b9_0
    • https://repo.continuum.io/pkgs/main/linux-64/linux-64::conda==4.9.2=py36h06a4308_0
    • pytorch/linux-64::pytorch==0.4.1=py36_py35_py27__9.0.176_7.1.2_2
    • https://repo.continuum.io/pkgs/main/noarch/noarch::tqdm==4.59.0=pyhd3eb1b0_1
    opened by Mazuzel 1
  • SVD fails in __wct_core when cont_feat or styl_feat are [x,1] dimensional matrix

    SVD fails in __wct_core when cont_feat or styl_feat are [x,1] dimensional matrix

    Unless I'm doing something wrong, there is a corner case inside def __wct_core, when one of the matrices is basically a vector. When calculating: contentConv = torch.mm(cont_feat, cont_feat.t()).div(cFSize[1] - 1) + iden

    cFSize[1] is 1 so there is a division by 0=> and we get a matrix full of NAN which is causing the SVD to fail.

    For now, as a w/a inside def __feature_wct I've changed the condtion if cont_mask[0].size <= 0 or styl_mask[0].size <= 0: continue

    to

    if cont_mask[0].size <= 1 or styl_mask[0].size <= 1: continue

    to ignore labels that causing this issue.

    Any idea why it happens and what is the best approach to fix it?

    opened by dkreinov 1
  • Update to the latest torch

    Update to the latest torch

    Note that demo_example3.sh depends on CSAIL Semantic Segmentation repo, which itself depends on later pytorch version. This example might break -- I added a warning in there.

    opened by z-a-f 2
Releases(f33e07f)
Owner
NVIDIA Corporation
NVIDIA Corporation
DCSL - Generalizable Crowd Counting via Diverse Context Style Learning

DCSL Generalizable Crowd Counting via Diverse Context Style Learning Requirement

3 Jun 13, 2022
A two-stage U-Net for high-fidelity denoising of historical recordings

A two-stage U-Net for high-fidelity denoising of historical recordings Official repository of the paper (not submitted yet): E. Moliner and V. Välimäk

Eloi Moliner Juanpere 57 Jan 05, 2023
Convolutional Neural Network to detect deforestation in the Amazon Rainforest

Convolutional Neural Network to detect deforestation in the Amazon Rainforest This project is part of my final work as an Aerospace Engineering studen

5 Feb 17, 2022
RoboDesk A Multi-Task Reinforcement Learning Benchmark

RoboDesk A Multi-Task Reinforcement Learning Benchmark If you find this open source release useful, please reference in your paper: @misc{kannan2021ro

Google Research 66 Oct 07, 2022
Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER (WIP) Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEER is an e

Alipay 6 Dec 17, 2022
Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021)

Transferable Semantic Augmentation for Domain Adaptation Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021) Paper

66 Dec 16, 2022
(NeurIPS 2020) Wasserstein Distances for Stereo Disparity Estimation

Wasserstein Distances for Stereo Disparity Estimation Accepted in NeurIPS 2020 as Spotlight. [Project Page] Wasserstein Distances for Stereo Disparity

Divyansh Garg 92 Dec 12, 2022
Repository for the COLING 2020 paper "Explainable Automated Fact-Checking: A Survey."

Explainable Fact Checking: A Survey This repository and the accompanying webpage contain resources for the paper "Explainable Fact Checking: A Survey"

Neema Kotonya 42 Nov 17, 2022
Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO)

KernelFunctionalOptimisation Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO) We have conducted all our experiments

2 Jun 29, 2022
Multi-robot collaborative exploration and mapping through Voronoi partition and DRL in unknown environment

Voronoi Multi_Robot Collaborate Exploration Introduction In the unknown environment, the cooperative exploration of multiple robots is completed by Vo

PeaceWord 6 Nov 22, 2022
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
A Pytorch implement of paper "Anomaly detection in dynamic graphs via transformer" (TADDY).

TADDY: Anomaly detection in dynamic graphs via transformer This repo covers an reference implementation for the paper "Anomaly detection in dynamic gr

Yue Tan 21 Nov 24, 2022
A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.

TiSASRec.paddle A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation. Introduction 论文:Time Interval Aware Sel

Paddorch 2 Nov 28, 2021
Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

The Face Synthetics dataset Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels. It was introduced in ou

Microsoft 608 Jan 02, 2023
Uses OpenCV and Python Code to detect a face on the screen

Simple-Face-Detection This code uses OpenCV and Python Code to detect a face on the screen. This serves as an example program. Important prerequisites

Denis Woolley (CreepyD) 1 Feb 12, 2022
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
A list of all named GANs!

The GAN Zoo Every week, new GAN papers are coming out and it's hard to keep track of them all, not to mention the incredibly creative ways in which re

Avinash Hindupur 12.9k Jan 08, 2023
Minecraft agent to farm resources using reinforcement learning

BarnyardBot CS 175 group project using Malmo download BarnyardBot.py into the python examples directory and run 'python BarnyardBot.py' in the console

0 Jul 26, 2022
Face and other object detection using OpenCV and ML Yolo

Object-and-Face-Detection-Using-Yolo- Opencv and YOLO object and face detection is implemented. You only look once (YOLO) is a state-of-the-art, real-

Happy N. Monday 3 Feb 15, 2022
How to train a CNN to 99% accuracy on MNIST in less than a second on a laptop

Training a NN to 99% accuracy on MNIST in 0.76 seconds A quick study on how fast you can reach 99% accuracy on MNIST with a single laptop. Our answer

Tuomas Oikarinen 42 Dec 10, 2022