Unsupervised Video Interpolation using Cycle Consistency

Overview

Unsupervised Video Interpolation using Cycle Consistency

Project | Paper | YouTube

Unsupervised Video Interpolation using Cycle Consistency
Fitsum A. Reda, Deqing Sun*, Aysegul Dundar, Mohammad Shoeybi, Guilin Liu, Kevin J. Shih, Andrew Tao, Jan Kautz, Bryan Catanzaro
NVIDIA Corporation
In International Conferene on Computer Vision (ICCV) 2019.
( * Currently affiliated with Google. )

Installation
# Get unsupervised video interpolation source codes
git clone https://github.com/NVIDIA/unsupervised-video-interpolation.git
cd unsupervised-video-interpolation
mkdir pretrained_models

# Build Docker Image
docker build -t unsupervised-video-interpolation -f Dockerfile .

If you prefer not to use docker, you can manually install the following requirements:

  • An NVIDIA GPU and CUDA 9.0 or higher. Some operations only have gpu implementation.
  • PyTorch (>= 1.0)
  • Python 3
  • numpy
  • scikit-image
  • imageio
  • pillow
  • tqdm
  • tensorboardX
  • natsort
  • ffmpeg
  • torchvision

To propose a model or change for inclusion, please submit a pull request.

Multiple GPU training and mixed precision training are supported, and the code provides examples for training and inference. For more help, type

python3 train.py --help

Network Architectures

Our repo now supports Super SloMo. Other video interpolation architectures can be integrated with our repo with minimal changes, for instance DVF or SepConv.

Pre-trained Models

We've included pre-trained models trained with cycle consistency (CC) alone, or with cycle consistency with Psuedo-supervised (CC + PS) losses.
Download checkpoints to a folder pretrained_models.

Supervised Baseline Weights

Unsupervised Finetuned Weights

Fully Unsupervised Weights for UCF101 evaluation

Data Loaders

We use VideoInterp and CycleVideoInterp (in datasets) dataloaders for all frame sequences, i.e. Adobe, YouTube, SlowFlow, Sintel, and UCF101.

We split Slowflow dataset into disjoint sets: A low FPS training (3.4K frames) and a high FPS test (414 frames) subset. We form the test set by selecting the first nine frames in each of the 46 clips, and train set by temporally sub-sampling the remaining frames from 240-fps to 30-fps. During evaluation, our models take as input the first and ninth frame in each test clip and interpolate seven intermediate frames. We follow a similar procedure for Sintel-1008fps, but interpolate 41 intermediate frames, i.e., conversion of frame rate from 24- to 1008-fps. Note, since SlowFlow and Sintel are of high resolution, we downsample all frames by a factor of 2 isotropically.
All training and evaluations presented in the paper are done on the spatially downsampled sequences.

For UCF101, we simply use the the test provided here.

Generating Interpolated Frames or Videos

  • --write_video and --write_images, if enabled will create an interpolated video and interpolated frame sequences, respectively.
#Example creation of interpolated videos, where we interleave low FPS input frames with one or more interpolated intermediate frames.
python3 eval.py --model CycleHJSuperSloMo --num_interp 7 --flow_scale 2 --val_file ${/path/to/input/sequences} \
    --name ${video_name} --save ${/path/to/output/folder} --post_fix ${output_image_tag} \
    --resume ${/path/to/pre-trained/model} --write_video
  • If input sequences for interpolation do not contain ground-truth intermediate frames, add --val_sample_rate 0 and --val_step_size 1 to the example script above.
  • For a simple test on two input frames, set --val_file to the folder containing both frames, and set --val_sample_rate 0, --val_step_size 1.

Images : Results and Comparisons

.
.
.

Inference for Unsupervised Models

  • UCF101: A total of 379 folders, each with three frames, with the middle frame being the ground-truth for a single frame interpolation.
# Evaluation of model trained with CC alone on Adobe-30fps dataset
# PSNR: 34.47, SSIM: 0.946, IE: 5.50
python3 eval.py --model CycleHJSuperSloMo --num_interp 1 --flow_scale 1 --val_file /path/to/ucf/root \
    --resume ./pretrained_models/fully_unsupervised_adobe30fps.pth
# Evaluation of model trained with CC alone on Battlefield-30fps dataset
# PSNR: 34.55, SSIM: 0.947, IE: 5.38
python3 eval.py --model CycleHJSuperSloMo --num_interp 1 --flow_scale 1 --val_file /path/to/ucf/root \
    --resume ./pretrained_models/fully_unsupervised_battlefield30fps.pth
  • SlowFlow: A total of 46 folders, each with nine frames, with the intermediate nine frames being ground-truths for a 30->240FPS multi-frame interpolation.
# Evaluation of model trained with CC alone on SlowFlow-30fps train split
# PSNR: 32.35, SSIM: 0.886, IE: 6.78
python3 eval.py --model CycleHJSuperSloMo --num_interp 7 --flow_scale 2 --val_file /path/to/SlowFlow/val \
    --resume ./pretrained_models/unsupervised_random2slowflow.pth
# Evaluation of model finetuned with CC+PS losses on SlowFlow-30fps train split.
# Model pre-trained with supervision on Adobe-240fps.
# PSNR: 33.05, SSIM: 0.890, IE: 6.62
python3 eval.py --model CycleHJSuperSloMo --num_interp 7 --flow_scale 2 --val_file /path/to/SlowFlow/val \
    --resume ./pretrained_models/unsupervised_adobe2slowflow.pth
# Evaluation of model finetuned with CC+PS losses on SlowFlow-30fps train split.
# Model pre-trained with supervision on Adobe+YouTube-240fps.
# PSNR: 33.20, SSIM: 0.891, IE: 6.56
python3 eval.py --model CycleHJSuperSloMo --num_interp 7 --flow_scale 2 --val_file /path/to/SlowFlow/val \
    --resume ./pretrained_models/unsupervised_adobe+youtube2slowflow.pth
  • Sintel: A total of 13 folders, each with 43 frames, with the intermediate 41 frames being ground-truths for a 30->1008FPS multi-frame interpolation.
We simply use the same commands used for SlowFlow, but setting `--num_interp 41`
and the corresponding `--resume *2sintel.pth` pre-trained models should lead to the number we presented in our papers.

Inference for Supervised Baseline Models

  • UCF101: A total of 379 folders, each with three frames, with the middle frame being the ground-truth for a single frame interpolation.
# Evaluation of model trained with Paird-GT on Adobe-240fps dataset
# PSNR: 34.63, SSIM: 0.946, IE: 5.48
python3 eval.py --model HJSuperSloMo --num_interp 1 --flow_scale 1 --val_file /path/to/ucf/root \
    --resume ./pretrained_models/baseline_superslomo_adobe.pth
  • SlowFlow: A total of 46 folders, each with nine frames, with the intermediate nine frames being ground-truths for a 30->240FPS multi-frame interpolation.
# Evaluation of model trained with paird-GT on Adobe-240fps dataset
# PSNR: 32.84, SSIM: 0.887, IE: 6.67
python3 eval.py --model HJSuperSloMo --num_interp 7 --flow_scale 2 --val_file /path/to/SlowFlow/val \
    --resume ./pretrained_models/baseline_superslomo_adobe.pth
# Evaluation of model trained with paird-GT on Adobe+YouTube-240fps dataset
# PSNR: 33.13, SSIM: 0.889, IE: 6.63
python3 eval.py --model HJSuperSloMo --num_interp 7 --flow_scale 2 --val_file /path/to/SlowFlow/val \
    --resume ./pretrained_models/baseline_superslomo_adobe+youtube.pth
  • Sintel: We use commands similar to SlowFlow, but setting --num_interp 41.

Training and Reproducing Our Results

# CC alone: Fully unsupervised training on SlowFlow and evaluation on SlowFlow
# SlowFlow/val target PSNR: 32.35, SSIM: 0.886, IE: 6.78
python3 -m torch.distributed.launch --nproc_per_node=16 train.py --model CycleHJSuperSloMo \
    --flow_scale 2.0 --batch_size 2 --crop_size 384 384 --print_freq 1 --dataset CycleVideoInterp \
    --step_size 1 --sample_rate 0 --num_interp 7 --val_num_interp 7 --skip_aug --save_freq 20 --start_epoch 0 \
    --train_file /path/to/SlowFlow/train --val_file SlowFlow/val --name unsupervised_slowflow --save /path/to/output 

# --nproc_per_node=16, we use a total of 16 V100 GPUs over two nodes.
# CC + PS: Unsupervised fine-tuning on SlowFlow with a baseline model pre-trained on Adobe+YouTube-240fps.
# SlowFlow/val target PSNR: 33.20, SSIM: 0.891, IE: 6.56
python3 -m torch.distributed.launch --nproc_per_node=16 train.py --model CycleHJSuperSloMo \
    --flow_scale 2.0 --batch_size 2 --crop_size 384 384 --print_freq 1 --dataset CycleVideoInterp \
    --step_size 1 --sample_rate 0 --num_interp 7 --val_num_interp 7 --skip_aug --save_freq 20 --start_epoch 0 \
    --train_file /path/to/SlowFlow/train --val_file /path/to/SlowFlow/val --name finetune_slowflow \
    --save /path/to/output --resume ./pretrained_models/baseline_superslomo_adobe+youtube.pth
# Supervised baseline training on Adobe240-fps and evaluation on SlowFlow
# SlowFlow/val target PSNR: 32.84, SSIM: 0.887, IE: 6.67
python3 -m torch.distributed.launch --nproc_per_node=16 train.py --model HJSuperSloMo \
    --flow_scale 2.0 --batch_size 2 --crop_size 352 352 --print_freq 1 --dataset VideoInterp \
    --num_interp 7 --val_num_interp 7 --skip_aug --save_freq 20 --start_epoch 0 --stride 32 \
    --train_file /path/to/Adobe-240fps/train --val_file /path/to/SlowFlow/val --name supervised_adobe \
    --save /path/to/output

Reference

If you find this implementation useful in your work, please acknowledge it appropriately and cite the paper or code accordingly:

@InProceedings{Reda_2019_ICCV,
author = {Fitsum A Reda and Deqing Sun and Aysegul Dundar and Mohammad Shoeybi and Guilin Liu and Kevin J Shih and Andrew Tao and Jan Kautz and Bryan Catanzaro},
title = {Unsupervised Video Interpolation Using Cycle Consistency},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {October},
year = {2019},
url={https://nv-adlr.github.io/publication/2019-UnsupervisedVideoInterpolation}
}

We encourage people to contribute to our code base and provide suggestions, point any issues, or solution using merge request, and we hope this repo is useful.

Acknowledgments

Parts of the code were inspired by NVIDIA/flownet2-pytorch, ClementPinard/FlowNetPytorch, and avinashpaliwal/Super-SloMo.

We would also like to thank Huaizu Jiang.

Coding style

  • 4 spaces for indentation rather than tabs
  • 80 character line length
  • PEP8 formatting
Owner
NVIDIA Corporation
NVIDIA Corporation
Automatically replace ONNX's RandomNormal node with Constant node.

onnx-remove-random-normal This is a script to replace RandomNormal node with Constant node. Example Imagine that we have something ONNX model like the

Masashi Shibata 1 Dec 11, 2021
All course materials for the Zero to Mastery Machine Learning and Data Science course.

Zero to Mastery Machine Learning Welcome! This repository contains all of the code, notebooks, images and other materials related to the Zero to Maste

Daniel Bourke 1.6k Jan 08, 2023
Official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space

NeuralFusion This is the official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space. We provide code to train the proposed pipel

53 Jan 01, 2023
Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation

Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation This repository contains the Pytorch implementation of the proposed

Devavrat Tomar 19 Nov 10, 2022
Constraint-based geometry sketcher for blender

Constraint-based sketcher addon for Blender that allows to create precise 2d shapes by defining a set of geometric constraints like tangent, distance,

1.7k Dec 31, 2022
Pytorch Code for "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation"

Medical-Transformer Pytorch Code for the paper "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation" About this repo: This repo

Jeya Maria Jose 615 Dec 25, 2022
Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust.

Subspace Adversarial Training Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust. However,

15 Sep 02, 2022
Unofficial PyTorch implementation of SimCLR by Google Brain

Unofficial PyTorch implementation of SimCLR by Google Brain

Rishabh Anand 2 Oct 13, 2021
Super Pix Adv - Offical implemention of Robust Superpixel-Guided Attentional Adversarial Attack (CVPR2020)

Super_Pix_Adv Offical implemention of Robust Superpixel-Guided Attentional Adver

DLight 8 Oct 26, 2022
Code for the paper "Zero-shot Natural Language Video Localization" (ICCV2021, Oral).

Zero-shot Natural Language Video Localization (ZSNLVL) by Pseudo-Supervised Video Localization (PSVL) This repository is for Zero-shot Natural Languag

Computer Vision Lab. @ GIST 37 Dec 27, 2022
Code for HodgeNet: Learning Spectral Geometry on Triangle Meshes, in SIGGRAPH 2021.

HodgeNet | Webpage | Paper | Video HodgeNet: Learning Spectral Geometry on Triangle Meshes Dmitriy Smirnov, Justin Solomon SIGGRAPH 2021 Set-up To ins

Dima Smirnov 61 Nov 27, 2022
Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"

THESIS_CAIRONE_FIORENTINO Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques" GENERATE TOKE

cairone_fiorentino97 1 Dec 10, 2021
[CVPR 2020] Local Class-Specific and Global Image-Level Generative Adversarial Networks for Semantic-Guided Scene Generation

Contents Local and Global GAN Cross-View Image Translation Semantic Image Synthesis Acknowledgments Related Projects Citation Contributions Collaborat

Hao Tang 131 Dec 07, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
Build fully-functioning computer vision models with PyTorch

Detecto is a Python package that allows you to build fully-functioning computer vision and object detection models with just 5 lines of code. Inferenc

Alan Bi 576 Dec 29, 2022
Plugin adapted from Ultralytics to bring YOLOv5 into Napari

napari-yolov5 Plugin adapted from Ultralytics to bring YOLOv5 into Napari. Training and detection can be done using the GUI. Training dataset must be

2 May 05, 2022
A stable algorithm for GAN training

DRAGAN (Deep Regret Analytic Generative Adversarial Networks) Link to our paper - https://arxiv.org/abs/1705.07215 Pytorch implementation (thanks!) -

195 Oct 10, 2022
Anomaly detection related books, papers, videos, and toolboxes

Anomaly Detection Learning Resources Outlier Detection (also known as Anomaly Detection) is an exciting yet challenging field, which aims to identify

Yue Zhao 6.7k Dec 31, 2022
A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows"

OutliersSlidingWindows A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows" Dataset generatio

PaoloPellizzoni 0 Jan 05, 2022
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Matthias Fey 139 Dec 25, 2022