Official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.

Overview

Introduction

This repository is the official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.

Data-free Knowledge Distillation for Object Detection
Akshay Chawla, Hongxu Yin, Pavlo Molchanov and Jose Alvarez
NVIDIA

Abstract: We present DeepInversion for Object Detection (DIODE) to enable data-free knowledge distillation for neural networks trained on the object detection task. From a data-free perspective, DIODE synthesizes images given only an off-the-shelf pre-trained detection network and without any prior domain knowledge, generator network, or pre-computed activations. DIODE relies on two key components—first, an extensive set of differentiable augmentations to improve image fidelity and distillation effectiveness. Second, a novel automated bounding box and category sampling scheme for image synthesis enabling generating a large number of images with a diverse set of spatial and category objects. The resulting images enable data-free knowledge distillation from a teacher to a student detector, initialized from scratch. In an extensive set of experiments, we demonstrate that DIODE’s ability to match the original training distribution consistently enables more effective knowledge distillation than out-of-distribution proxy datasets, which unavoidably occur in a data-free setup given the absence of the original domain knowledge.

[PDF - OpenAccess CVF]

Core idea

LICENSE

Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.

This work is made available under the Nvidia Source Code License (1-Way Commercial). To view a copy of this license, visit https://github.com/NVlabs/DIODE/blob/master/LICENSE

Setup environment

Install conda [link] python package manager then install the lpr environment and other packages as follows:

$ conda env create -f ./docker_environment/lpr_env.yml
$ conda activate lpr
$ conda install -y -c conda-forge opencv
$ conda install -y tqdm
$ git clone https://github.com/NVIDIA/apex
$ cd apex
$ pip install -v --no-cache-dir ./

Note: You may also generate a docker image based on provided Dockerfile docker_environments/Dockerfile.

How to run?

This repository allows for generating location and category conditioned images from an off-the-shelf Yolo-V3 object detection model.

  1. Download the directory DIODE_data from google cloud storage: gcs-link (234 GB)
  2. Copy pre-trained yolo-v3 checkpoint and pickle files as follows:
    $ cp /path/to/DIODE_data/pretrained/names.pkl /pathto/lpr_deep_inversion/models/yolo/
    $ cp /path/to/DIODE_data/pretrained/colors.pkl /pathto/lpr_deep_inversion/models/yolo/
    $ cp /path/to/DIODE_data/pretrained/yolov3-tiny.pt /pathto/lpr_deep_inversion/models/yolo/
    $ cp /path/to/DIODE_data/pretrained/yolov3-spp-ultralytics.pt /pathto/lpr_deep_inversion/models/yolo/
    
  3. Extract the one-box dataset (single object per image) as follows:
    $ cd /path/to/DIODE_data
    $ tar xzf onebox/onebox.tgz -C /tmp
    
  4. Confirm the folder /tmp/onebox containing the onebox dataset is present and has following directories and text file manifest.txt:
    $ cd /tmp/onebox
    $ ls
    images  labels  manifest.txt
    
  5. Generate images from yolo-v3:
    $ cd /path/to/lpr_deep_inversion
    $ chmod +x scripts/runner_yolo_multiscale.sh
    $ scripts/runner_yolo_multiscale.sh
    

Images

Notes:

  1. For ngc, use the provided bash script scripts/diode_ngc_interactivejob.sh to start an interactive ngc job with environment setup, code and data setup.
  2. To generate large dataset use bash script scripts/LINE_looped_runner_yolo.sh.
  3. Check knowledge_distillation subfolder for code for knowledge distillation using generated datasets.

Citation

@inproceedings{chawla2021diode,
	title = {Data-free Knowledge Distillation for Object Detection},
	author = {Chawla, Akshay and Yin, Hongxu and Molchanov, Pavlo and Alvarez, Jose M.},
	booktitle = {The IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
	month = January,
	year = {2021}
}
Multimodal Temporal Context Network (MTCN)

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
Pyeventbus: a publish/subscribe event bus

pyeventbus pyeventbus is a publish/subscribe event bus for Python 2.7. simplifies the communication between python classes decouples event senders and

15 Apr 21, 2022
这是一个deeplabv3-plus-pytorch的源码,可以用于训练自己的模型。

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 训练步骤

Bubbliiiing 350 Dec 28, 2022
A generator of point clouds dataset for PyPipes.

CloudPipesGenerator Documentation | Colab Notebooks | Video Tutorials | Master Degree website A generator of point clouds dataset for PyPipes. TODO Us

1 Jan 13, 2022
CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels

CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels Accurate pressure drop estimat

Alejandro Montanez 0 Jan 21, 2022
Implementation of CVPR'2022:Surface Reconstruction from Point Clouds by Learning Predictive Context Priors

Surface Reconstruction from Point Clouds by Learning Predictive Context Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository c

136 Dec 12, 2022
Python library for analysis of time series data including dimensionality reduction, clustering, and Markov model estimation

deeptime Releases: Installation via conda recommended. conda install -c conda-forge deeptime pip install deeptime Documentation: deeptime-ml.github.io

495 Dec 28, 2022
Quantify the difference between two arbitrary curves in space

similaritymeasures Quantify the difference between two arbitrary curves Curves in this case are: discretized by inidviudal data points ordered from a

Charles Jekel 175 Jan 08, 2023
🔥 Cannlytics-powered artificial intelligence 🤖

Cannlytics AI 🔥 Cannlytics-powered artificial intelligence 🤖 🏗️ Installation 🏃‍♀️ Quickstart 🧱 Development 🦾 Automation 💸 Support 🏛️ License ?

Cannlytics 3 Nov 11, 2022
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN

ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN CVPR 2020 (Oral); Pose and Appearance Attributes Transfer;

Men Yifang 400 Dec 29, 2022
Generative Adversarial Networks(GANs)

Generative Adversarial Networks(GANs) Vanilla GAN ClusterGAN Vanilla GAN Model Structure Final Generator Structure A MLP with 2 hidden layers of hidde

Zhenbang Feng 2 Nov 05, 2021
Agent-based model simulator for air quality and pandemic risk assessment in architectural spaces

Agent-based model simulation for air quality and pandemic risk assessment in architectural spaces. User Guide archABM is a fast and open source agent-

Vicomtech 10 Dec 05, 2022
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training pro

Yang Wenhan 44 Dec 06, 2022
[NeurIPS'20] Self-supervised Co-Training for Video Representation Learning. Tengda Han, Weidi Xie, Andrew Zisserman.

CoCLR: Self-supervised Co-Training for Video Representation Learning This repository contains the implementation of: InfoNCE (MoCo on videos) UberNCE

Tengda Han 271 Jan 02, 2023
ToFFi - Toolbox for Frequency-based Fingerprinting of Brain Signals

ToFFi Toolbox This repository contains "before peer review" version of the software related to the preprint of the publication ToFFi - Toolbox for Fre

4 Aug 31, 2022
Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
CONditionals for Ordinal Regression and classification in PyTorch

CONDOR pytorch implementation for ordinal regression with deep neural networks. Documentation: https://GarrettJenkinson.github.io/condor_pytorch About

7 Jul 25, 2022
GLM (General Language Model)

GLM GLM is a General Language Model pretrained with an autoregressive blank-filling objective and can be finetuned on various natural language underst

THUDM 421 Jan 04, 2023
magiCARP: Contrastive Authoring+Reviewing Pretraining

magiCARP: Contrastive Authoring+Reviewing Pretraining Welcome to the magiCARP API, the test bed used by EleutherAI for performing text/text bi-encoder

EleutherAI 43 Dec 29, 2022