The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Related tags

Deep LearningVAEBM
Overview

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper)

Zhisheng Xiao·Karsten Kreis·Jan Kautz·Arash Vahdat


VAEBM trains an energy network to refine the data distribution learned by an NVAE, where the enery network and the VAE jointly define an Energy-based model. The NVAE is pretrained before training the energy network, and please refer to NVAE's implementation for more details about constructing and training NVAE.

Set up datasets

We trained on several datasets, including CIFAR10, CelebA64, LSUN Church 64 and CelebA HQ 256. For large datasets, we store the data in LMDB datasets for I/O efficiency. Check here for information regarding dataset preparation.

Training NVAE

We use the following commands on each dataset for training the NVAE backbone. To train NVAEs, please use its original codebase with commands given here.

CIFAR-10 (8x 16-GB GPUs)

python train.py --data $DATA_DIR/cifar10 --root $CHECKPOINT_DIR --save $EXPR_ID --dataset cifar10 \
      --num_channels_enc 128 --num_channels_dec 128 --epochs 400 --num_postprocess_cells 2 --num_preprocess_cells 2 \
      --num_latent_scales 1 --num_latent_per_group 20 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 \
      --num_preprocess_blocks 1 --num_postprocess_blocks 1 --num_groups_per_scale 30 --batch_size 32 \
      --weight_decay_norm 1e-1 --num_nf 1 --num_mixture_dec 1 --fast_adamax  --arch_instance res_mbconv \
      --num_process_per_node 8 --use_se --res_dist

CelebA-64 (8x 16-GB GPUs)

python train.py --data  $DATA_DIR/celeba64_lmdb --root $CHECKPOINT_DIR --save $EXPR_ID --dataset celeba_64 \
      --num_channels_enc 48 --num_channels_dec 48 --epochs 50 --num_postprocess_cells 2 --num_preprocess_cells 2 \
      --num_latent_scales 3 --num_latent_per_group 20 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 \
      --num_preprocess_blocks 1 --num_postprocess_blocks 1 --weight_decay_norm 1e-1 --num_groups_per_scale 5 \
      --batch_size 32 --num_nf 1 --num_mixture_dec 1 --fast_adamax  --warmup_epochs 1 --arch_instance res_mbconv \
      --num_process_per_node 8 --use_se --res_dist

CelebA-HQ-256 (8x 32-GB GPUs)

python train.py -data  $DATA_DIR/celeba/celeba-lmdb --root $CHECKPOINT_DIR --save $EXPR_ID --dataset celeba_256 \
      --num_channels_enc 32 --num_channels_dec 32 --epochs 200 --num_postprocess_cells 2 --num_preprocess_cells 2 \
      --num_latent_per_group 20 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 --num_preprocess_blocks 1 \
      --num_postprocess_blocks 1 --weight_decay_norm 1e-2 --num_x_bits 5 --num_latent_scales 5 --num_groups_per_scale 4 \
      --num_nf 2 --batch_size 8 --fast_adamax  --num_mixture_dec 1 \
      --weight_decay_norm_anneal  --weight_decay_norm_init 1e1 --learning_rate 6e-3 --arch_instance res_mbconv \
      --num_process_per_node 8 --use_se --res_dist

LSUN Churches Outdoor 64 (8x 16-GB GPUs)

python train.py --data $DATA_DIR/LSUN/ --root $CHECKPOINT_DIR --save $EXPR_ID --dataset lsun_church_64 \
      --num_channels_enc 48 --num_channels_dec 48 --epochs 60 --num_postprocess_cells 2 --num_preprocess_cells 2 \
      --num_latent_scales 3 --num_latent_per_group 20 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 \
      --num_preprocess_blocks 1 --num_postprocess_blocks 1 --weight_decay_norm 1e-1 --num_groups_per_scale 5 \
      --batch_size 32 --num_nf 1 --num_mixture_dec 1 --fast_adamax  --warmup_epochs 1 --arch_instance res_mbconv \
      --num_process_per_node 8 --use_se --res_dist

Training VAEBM

We use the following commands on each dataset for training VAEBM. Note that you need to train the NVAE on corresponding dataset before running the training command here. After training the NVAE, pass the path of the checkpoint to the --checkpoint argument.

Note that the training of VAEBM will eventually explode (See Appendix E of our paper), and therefore it is important to save checkpoint regularly. After the training explodes, stop running the code and use the last few saved checkpoints for testing.

CIFAR-10

We train VAEBM on CIFAR-10 using one 32-GB V100 GPU.

python train_VAEBM.py  --checkpoint ./checkpoints/cifar10/checkpoint.pt --experiment cifar10_exp1
--dataset cifar10 --im_size 32 --data ./data/cifar10 --num_steps 10 
--wd 3e-5 --step_size 8e-5 --total_iter 30000 --alpha_s 0.2 --lr 4e-5 --max_p 0.6 
--anneal_step 5000. --batch_size 32 --n_channel 128

CelebA 64

We train VAEBM on CelebA 64 using one 32-GB V100 GPU.

python train_VAEBM.py --checkpoint ./checkpoints/celeba_64/checkpoint.pt --experiment celeba64_exp1 --dataset celeba_64 
--im_size 64 --lr 5e-5 --batch_size 32 --n_channel 64 --num_steps 10 --use_mu_cd --wd 3e-5 --step_size 5e-6 --total_iter 30000 
--alpha_s 0.2 

LSUN Church 64

We train VAEBM on LSUN Church 64 using one 32-GB V100 GPU.

python train_VAEBM.py --checkpoint ./checkpoints/lsun_church/checkpoint.pt --experiment lsunchurch_exp1 --dataset lsun_church 
--im_size 64 --batch_size 32 --n_channel 64 --num_steps 10 --use_mu_cd --wd 3e-5 --step_size 4e-6 --total_iter 30000 --alpha_s 0.2 --lr 4e-5 
--use_buffer --max_p 0.6 --anneal_step 5000

CelebA HQ 256

We train VAEBM on CelebA HQ 256 using four 32-GB V100 GPUs.

python train_VAEBM_distributed.py --checkpoint ./checkpoints/celeba_256/checkpoint.pt --experiment celeba256_exp1 --dataset celeba_256
--num_process_per_node 4 --im_size 256 --batch_size 4 --n_channel 64 --num_steps 6 --use_mu_cd --wd 3e-5 --step_size 3e-6 
--total_iter 9000 --alpha_s 0.3 --lr 4e-5 --use_buffer --max_p 0.6 --anneal_step 3000 --buffer_size 2000

Sampling from VAEBM

To generate samples from VAEBM after training, run sample_VAEBM.py, and it will generate 50000 test images in your given path. When sampling, we typically use longer Langvin dynamics than training for better sample quality, see Appendix E of the paper for the step sizes and number of steps we use to obtain test samples for each dataset. Other parameters that ensure successfully loading the VAE and energy network are the same as in the training codes.

For example, the script used to sample CIFAR-10 is

python sample_VAEBM.py --checkpoint ./checkpoints/cifar_10/checkpoint.pt --ebm_checkpoint ./saved_models/cifar_10/cifar_exp1/EBM.pth 
--dataset cifar10 --im_size 32 --batch_size 40 --n_channel 128 --num_steps 16 --step_size 8e-5 

For CelebA 64,

python sample_VAEBM.py --checkpoint ./checkpoints/celeba_64/checkpoint.pt --ebm_checkpoint ./saved_models/celeba_64/celeba64_exp1/EBM.pth 
--dataset celeba_64 --im_size 64 --batch_size 40 --n_channel 64 --num_steps 20 --step_size 5e-6 

For LSUN Church 64,

python sample_VAEBM.py --checkpoint ./checkpoints/lsun_church/checkpoint.pt --ebm_checkpoint ./saved_models/lsun_chruch/lsunchurch_exp1/EBM.pth 
--dataset lsun_church --im_size 64 --batch_size 40 --n_channel 64 --num_steps 20 --step_size 4e-6 

For CelebA HQ 256,

python sample_VAEBM.py --checkpoint ./checkpoints/celeba_256/checkpoint.pt --ebm_checkpoint ./saved_models/celeba_256/celeba256_exp1/EBM.pth 
--dataset celeba_256 --im_size 256 --batch_size 10 --n_channel 64 --num_steps 24 --step_size 3e-6 

Evaluation

After sampling, use the Tensorflow or PyTorch implementation to compute the FID scores. For example, when using the Tensorflow implementation, you can obtain the FID score by saving the training images in /path/to/training_images and running the script:

python fid.py /path/to/training_images /path/to/sampled_images

For CIFAR-10, the training statistics can be downloaded from here, and the FID score can be computed by running

python fid.py /path/to/sampled_images /path/to/precalculated_stats.npz

For the Inception Score, save samples in a single numpy array with pixel values in range [0, 255] and simply run

python ./thirdparty/inception_score.py --sample_dir /path/to/sampled_images

where the code for computing Inception Score is adapted from here.

License

Please check the LICENSE file. VAEBM may be used non-commercially, meaning for research or evaluation purposes only. For business inquiries, please contact [email protected].

Bibtex

Cite our paper using the following bibtex item:

@inproceedings{
xiao2021vaebm,
title={VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models},
author={Zhisheng Xiao and Karsten Kreis and Jan Kautz and Arash Vahdat},
booktitle={International Conference on Learning Representations},
year={2021}
}
PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric

PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric This repository contains the implementation of MSBG hearing loss m

BUT <a href=[email protected]"> 9 Nov 08, 2022
Unsupervised captioning - Code for Unsupervised Image Captioning

Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se

Yang Feng 207 Dec 24, 2022
基于YoloX目标检测+DeepSort算法实现多目标追踪Baseline

项目简介: 使用YOLOX+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。 代码地址(欢迎star): https://github.com/Sharpiless/yolox-deepsort/ 最终效果: 运行demo: python demo

114 Dec 30, 2022
Send text to girlfriend in the morning

Girlfriend Text Send text to girlfriend (or really anyone with a phone number) in the morning 1. Configure your settings in utils.py. phone_number = "

Paras Adhikary 199 Oct 25, 2022
This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.

Skeleton Aware Multi-modal Sign Language Recognition By Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li and Yun Fu. Smile Lab @ Northeastern

Isen (Songyao Jiang) 128 Dec 08, 2022
This is the official repository of the paper Stocastic bandits with groups of similar arms (NeurIPS 2021). It contains the code that was used to compute the figures and experiments of the paper.

Experiments How to reproduce experimental results of Stochastic bandits with groups of similar arms submitted paper ? Section 5 of the paper To reprod

Fabien 0 Oct 25, 2021
Non-stationary GP package written from scratch in PyTorch

NSGP-Torch Examples gpytorch model with skgpytorch # Import packages import torch from regdata import NonStat2D from gpytorch.kernels import RBFKernel

Zeel B Patel 1 Mar 06, 2022
Fast, modular reference implementation and easy training of Semantic Segmentation algorithms in PyTorch.

TorchSeg This project aims at providing a fast, modular reference implementation for semantic segmentation models using PyTorch. Highlights Modular De

ycszen 1.4k Jan 02, 2023
automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..)

Automatic-precautionary-guard automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..) what is this

badra 0 Jan 06, 2022
Prml - Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop

Pattern Recognition and Machine Learning (PRML) This project contains Jupyter notebooks of many the algorithms presented in Christopher Bishop's Patte

Gerardo Durán-Martín 1k Jan 07, 2023
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

ElementAI 217 Jan 01, 2023
Competitive Programming Club, Clinify's Official repository for CP problems hosting by club members.

Clinify-CPC_Programs This repository holds the record of the competitive programming club where the competitive coding aspirants are thriving hard and

Clinify Open Sauce 4 Aug 22, 2022
BboxToolkit is a tiny library of special bounding boxes.

BboxToolkit is a light codebase collecting some practical functions for the special-shape detection, such as oriented detection

jbwang1997 73 Jan 01, 2023
Constraint-based geometry sketcher for blender

Constraint-based sketcher addon for Blender that allows to create precise 2d shapes by defining a set of geometric constraints like tangent, distance,

1.7k Dec 31, 2022
Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images

SASSnet Code for paper: Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images(MICCAI 2020) Our code is origin from UA-MT You can fin

klein 125 Jan 03, 2023
Graph-total-spanning-trees - A Python script to get total number of Spanning Trees in a Graph

Total number of Spanning Trees in a Graph This is a python script just written f

Mehdi I. 0 Jul 18, 2022
Towards uncontrained hand-object reconstruction from RGB videos

Towards uncontrained hand-object reconstruction from RGB videos Yana Hasson, Gül Varol, Ivan Laptev and Cordelia Schmid Project page Paper Table of Co

Yana 69 Dec 27, 2022
LeetCode Solutions https://t.me/tenvlad

leetcode LeetCode Solutions groupped by common patterns YouTube: https://www.youtube.com/c/vladten Telegram: https://t.me/nilinterface Problems source

Vlad Ten 158 Dec 29, 2022
Collapse by Conditioning: Training Class-conditional GANs with Limited Data

Collapse by Conditioning: Training Class-conditional GANs with Limited Data Moha

Mohamad Shahbazi 33 Dec 06, 2022
PyTorch implementations of the beta divergence loss.

Beta Divergence Loss - PyTorch Implementation This repository contains code for a PyTorch implementation of the beta divergence loss. Dependencies Thi

Billy Carson 7 Nov 09, 2022