ocroseg - This is a deep learning model for page layout analysis / segmentation.

Overview

ocroseg

This is a deep learning model for page layout analysis / segmentation.

There are many different ways in which you can train and run it, but by default, it will simply return the text lines in a page image.

Segmentation

Segmentation is carried out using the ocroseg.Segmenter class. This needs a model that you can download or train yourself.

%%bash
model=lowskew-000000259-011440.pt
test -f $model || wget --quiet -nd https://storage.googleapis.com/tmb-models/$model
%pylab inline
rc("image", cmap="gray", interpolation="bicubic")
figsize(10, 10)
Populating the interactive namespace from numpy and matplotlib

The Segmenter object handles page segmentation using a DL model.

import ocroseg
seg = ocroseg.Segmenter("lowskew-000000259-011440.pt")
seg.model
Sequential(
  (0): Conv2d(1, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True)
  (2): ReLU()
  (3): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)
  (4): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (5): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)
  (6): ReLU()
  (7): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)
  (8): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (9): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True)
  (10): ReLU()
  (11): LSTM2(
    (hlstm): RowwiseLSTM(
      (lstm): LSTM(64, 32, bidirectional=1)
    )
    (vlstm): RowwiseLSTM(
      (lstm): LSTM(64, 32, bidirectional=1)
    )
  )
  (12): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1))
  (13): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)
  (14): ReLU()
  (15): LSTM2(
    (hlstm): RowwiseLSTM(
      (lstm): LSTM(32, 32, bidirectional=1)
    )
    (vlstm): RowwiseLSTM(
      (lstm): LSTM(64, 32, bidirectional=1)
    )
  )
  (16): Conv2d(64, 1, kernel_size=(1, 1), stride=(1, 1))
  (17): Sigmoid()
)

Let's segment a page with this.

image = 1.0 - imread("testdata/W1P0.png")[:2000]
print image.shape
imshow(image)
(2000, 2592)





<matplotlib.image.AxesImage at 0x7f6078b09690>

png

The extract_textlines method returns a list of text line images, bounding boxes, etc.

lines = seg.extract_textlines(image)
imshow(lines[0]['image'])
<matplotlib.image.AxesImage at 0x7f60781c05d0>

png

The segmenter accomplishes this by predicting seeds for each text line. With a bit of mathematical morphology, these seeds are then extended into a text line segmentation.

imshow(seg.lines)
<matplotlib.image.AxesImage at 0x7f60781a5510>

png

Training

The text line segmenter is trained using pairs of page images and line images stored in tar files.

%%bash
tar -ztvf testdata/framedlines.tgz | sed 6q
-rw-rw-r-- tmb/tmb      110404 2017-03-19 16:47 A001BIN.framed.png
-rw-rw-r-- tmb/tmb       10985 2017-03-16 16:15 A001BIN.lines.png
-rw-rw-r-- tmb/tmb       74671 2017-03-19 16:47 A002BIN.framed.png
-rw-rw-r-- tmb/tmb        8528 2017-03-16 16:15 A002BIN.lines.png
-rw-rw-r-- tmb/tmb      147716 2017-03-19 16:47 A003BIN.framed.png
-rw-rw-r-- tmb/tmb       12023 2017-03-16 16:15 A003BIN.lines.png


tar: write error
from dlinputs import tarrecords
sample = tarrecords.tariterator(open("testdata/framedlines.tgz")).next()
subplot(121); imshow(sample["framed.png"])
subplot(122); imshow(sample["lines.png"])
<matplotlib.image.AxesImage at 0x7f60e3d9bc10>

png

There are also some tools for data augmentation.

Generally, you can train these kinds of segmenters on any kind of image data, though they work best on properly binarized, rotation and skew-normalized page images. Note that by conventions, pages are white on black. You need to make sure that the model you load matches the kinds of pages you are trying to segment.

The actual models used are pretty complex and require LSTMs to function well, but for demonstration purposes, let's define and use a tiny layout analysis model. Look in bigmodel.py for a realistic model.

%%writefile tinymodel.py
def make_model():
    r = 3
    model = nn.Sequential(
        nn.Conv2d(1, 8, r, padding=r//2),
        nn.ReLU(),
        nn.MaxPool2d(2, 2),
        nn.Conv2d(8, 1, r, padding=r//2),
        nn.Sigmoid()
    )
    return model
Writing tinymodel.py
%%bash
./ocroseg-train -d testdata/framedlines.tgz --maxtrain 10 -M tinymodel.py --display 0
raw sample:
__key__ 'A001BIN'
__source__ 'testdata/framedlines.tgz'
lines.png float32 (3300, 2592)
png float32 (3300, 2592)

preprocessed sample:
__key__ <type 'list'> ['A002BIN']
__source__ <type 'list'> ['testdata/framedlines.tgz']
input float32 (1, 3300, 2592, 1)
mask float32 (1, 3300, 2592, 1)
output float32 (1, 3300, 2592, 1)

ntrain 0
model:
Sequential(
  (0): Conv2d(1, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (1): ReLU()
  (2): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)
  (3): Conv2d(8, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (4): Sigmoid()
)

0 0 ['A006BIN'] 0.24655306 ['A006BIN'] 0.31490618 0.55315816 lr 0.03
1 1 ['A007BIN'] 0.24404158 ['A007BIN'] 0.30752876 0.54983306 lr 0.03
2 2 ['A004BIN'] 0.24024434 ['A004BIN'] 0.31007746 0.54046077 lr 0.03
3 3 ['A008BIN'] 0.23756175 ['A008BIN'] 0.30573484 0.5392694 lr 0.03
4 4 ['A00LBIN'] 0.22300518 ['A00LBIN'] 0.28594157 0.52989864 lr 0.03
5 5 ['A00MBIN'] 0.22032338 ['A00MBIN'] 0.28086954 0.52204597 lr 0.03
6 6 ['A00DBIN'] 0.22794804 ['A00DBIN'] 0.27466372 0.512208 lr 0.03
7 7 ['A009BIN'] 0.22404794 ['A009BIN'] 0.27621177 0.51116604 lr 0.03
8 8 ['A001BIN'] 0.22008553 ['A001BIN'] 0.27836022 0.5008192 lr 0.03
9 9 ['A00IBIN'] 0.21842314 ['A00IBIN'] 0.26755702 0.4992323 lr 0.03
Owner
NVIDIA Research Projects
NVIDIA Research Projects
computer vision, image processing and machine learning on the web browser or node.

Image processing and Machine learning labs   computer vision, image processing and machine learning on the web browser or node note Fast Fourier Trans

ryohei tanaka 487 Nov 11, 2022
Python tool that takes the OCR.space JSON output as input and draws a text overlay on top of the image.

OCR.space OCR Result Checker = Draw OCR overlay on top of image Python tool that takes the OCR.space JSON output as input, and draws an overlay on to

a9t9 4 Oct 18, 2022
A simple Security Camera created using Opencv in Python where images gets saved in realtime in your Dropbox account at every 5 seconds

Security Camera using Opencv & Dropbox This is a simple Security Camera created using Opencv in Python where images gets saved in realtime in your Dro

Arpit Rath 1 Jan 31, 2022
A synthetic data generator for text recognition

TextRecognitionDataGenerator A synthetic data generator for text recognition What is it for? Generating text image samples to train an OCR software. N

Edouard Belval 2.5k Jan 04, 2023
This repository lets you train neural networks models for performing end-to-end full-page handwriting recognition using the Apache MXNet deep learning frameworks on the IAM Dataset.

Handwritten Text Recognition (OCR) with MXNet Gluon These notebooks have been created by Jonathan Chung, as part of his internship as Applied Scientis

Amazon Web Services - Labs 422 Jan 03, 2023
The code of "Mask TextSpotter: An End-to-End Trainable Neural Network for Spotting Text with Arbitrary Shapes"

Mask TextSpotter A Pytorch implementation of Mask TextSpotter along with its extension can be find here Introduction This is the official implementati

Pengyuan Lyu 261 Nov 21, 2022
Um simples projeto para fazer o reconhecimento do captcha usado pelo jogo bombcrypto

CaptchaSolver - LEIA ISSO 😓 Para iniciar o codigo: pip install -r requirements.txt python captcha_solver.py Se você deseja pegar ver o resultado das

Kawanderson 50 Mar 21, 2022
Code for paper "Role-based network embedding via structural features reconstruction with degree-regularized constraint"

Role-based network embedding via structural features reconstruction with degree-regularized constraint Train python main.py --dataset brazil-flights

wang zhang 1 Jun 28, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
Automatically resolve RidderMaster based on TensorFlow & OpenCV

AutoRiddleMaster Automatically resolve RidderMaster based on TensorFlow & OpenCV 基于 TensorFlow 和 OpenCV 实现的全自动化解御迷士小马谜题 Demo How to use Deploy the ser

神龙章轩 5 Nov 19, 2021
Implementation of our paper 'PixelLink: Detecting Scene Text via Instance Segmentation' in AAAI2018

Code for the AAAI18 paper PixelLink: Detecting Scene Text via Instance Segmentation, by Dan Deng, Haifeng Liu, Xuelong Li, and Deng Cai. Contributions

758 Dec 22, 2022
TedEval: A Fair Evaluation Metric for Scene Text Detectors

TedEval: A Fair Evaluation Metric for Scene Text Detectors Official Python 3 implementation of TedEval | paper | slides Chae Young Lee, Youngmin Baek,

Clova AI Research 167 Nov 20, 2022
Text page dewarping using a "cubic sheet" model

page_dewarp Page dewarping and thresholding using a "cubic sheet" model - see full writeup at https://mzucker.github.io/2016/08/15/page-dewarping.html

Matt Zucker 1.2k Dec 29, 2022
Python Computer Vision Aim Bot for Roblox's Phantom Forces

Python-Phantom-Forces-Aim-Bot Python Computer Vision Aim Bot for Roblox's Phanto

drag0ngam3s 2 Jul 11, 2022
Python Computer Vision from Scratch

This repository explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both f

Milaan Parmar / Милан пармар / _米兰 帕尔马 221 Dec 26, 2022
Volume Control using OpenCV

Gesture-Volume-Control Volume Control using OpenCV Here i made volume control using Python and OpenCV in which we can control the volume of our laptop

Mudit Sinha 3 Oct 10, 2021
The CIS OCR PostCorrectionTool

The CIS OCR Post Correction Tool PoCoTo Source code for the Java-based PoCoTo client enabling fast interactive batch corrections of complete OCR error

CIS OCR Group 36 Dec 15, 2022
零样本学习测评基准,中文版

ZeroCLUE 零样本学习测评基准,中文版 零样本学习是AI识别方法之一。 简单来说就是识别从未见过的数据类别,即训练的分类器不仅仅能够识别出训练集中已有的数据类别, 还可以对于来自未见过的类别的数据进行区分。 这是一个很有用的功能,使得计算机能够具有知识迁移的能力,并无需任何训练数据, 很符合现

CLUE benchmark 27 Dec 10, 2022
When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework (CVPR 2021 oral)

MTLFace This repository contains the PyTorch implementation and the dataset of the paper: When Age-Invariant Face Recognition Meets Face Age Synthesis

Hzzone 120 Jan 05, 2023
A program that takes in the hand gesture displayed by the user and translates ASL.

Interactive-ASL-Recognition Using the framework mediapipe made by google, OpenCV library and through self teaching, I was able to create a program tha

Riddhi Bajaj 3 Nov 22, 2021