Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis

Overview

MOT Tracked object bounding box association (CenterTrack++)

New association method based on CenterTrack. Two new branches (Tracked Size and IOU) are added onto the original CenterTrack tracker. The proposed method enables the computation of IOU distance matrix for more accurate object association compared to single displacement offset in the original CenterTrack.

Modification to CenterTrack method, image modified from CenterTrack

Abstract

The recent development of multi-object tracking (MOT) on point-based joint detection and tracking methods has attracted much research attention. CenterTrack tracking algorithm is one of such promising methods. It achieves state-of-the-art tracking performance using a simple detection model and single-frame spatial offsets to localize objects and predict their associations in a single network. However, this method still suffers from high identity switches due to the inferior association method. Only point displacement distance matrix is used to associate objects, which is not robust to deal with occlusion scenarios. To reduce the high number of identity switches and improve the tracking accuracy, more effective spatial information should be used in association. In this paper, we propose to incorporate a simple tracked object bounding box and overlapping prediction based on the current frame onto the CenterTrack algorithm. Specifically, we propose a Intersection over Union (IOU) distance cost matrix in the association step instead of point displacement distance. We evaluate our proposed tracker on the MOT17 test dataset, showing that our proposed method can reduce identity switches significantly by 22.6% and obtain a notable improvement of 1.5% in IDF1 compared to the original CenterTrack’s under the same tracklet lifetime.

Main Contributions

  • Proposed two branches (tracked box size and IOU)on top of the existing CenterTrack method for IOU distance metric computation in object association
  • Evaluation the proposed method on MOT17 dataset and obtain significant reduction in IDs and notable improvements in tracking accuracy score

Two new branches

The idea of the proposed method is to enhance the original displacement only association. Inspired by the IOU distance in SORT and IOU-Tracker, IOU distance can be used for more accurate object association across frames. IOU distance is calculated as 1 - IOU(bounding box of detected object in the previous frame and the predicted tracked object bounding box in the previous frame based on the current frame)

Tracked Object Size prediction

In order to obtain the IOU distance, the bounding box of the tracked object in the previous frame should be learnt. In this project, two methods were used to learn the tracked bounding box.

Tracking_wh: Directly learn the width and height of the tracked object bounding box in the previous frame.

Tracking_ltrb: Learn the offsets of the left, top, right and bottom of bounding box from the tracked object center in the previous frame.

The tracking_wh(left) and tracking_ltrb(right) approach illustration.

IOU prediction

To further suppress inaccurate association, the IOU value of the tracked object bounding box in adjacent frames is learnt to provide a threshold to filter unlikely associations. We would set the IOU distance to infinity if IOU distance > IOU.

Association Method

Main results

Comparison with other SOTA tracker on MOT17 test set

Note: S= Spatial features, A=appearance features

Tracker Association Features MOTA IDF1 IDs
TubeTK S 63 58.6 4137
CenterTrack S 67.8 64.7 3039
Ours S 68.1 66.2 2352
SST A 52.4 49.5 8431
CTrackerV1 S+A 66.6 57.4 5529
DEFT S+A 66.6 65.4 2823
FairMOT S+A 73.7 72.3 3303

Ablative studies on tracked size prediction method

Tracking_wh

Association Method IDF1 MOTA IDs FP(%) FN(%)
DIS 69.2 66.2 219 3.9 29.5
IOU 71.1 66.7 204 3.6 29.3
Combined 70.9 66.2 233 3.9 29.6
DIS→IOU 70 66.2 218 3.9 29.5
IOU→DIS 69.8 66.8 185 3.6 29.2

Tracking_ltrb

Association Method IDF1 MOTA IDs FP(%) FN(%)
DIS 69.2 66.2 219 3.9 29.5
IOU 72.4 66.7 191 3.8 29.2
Combined 70.8 66.5 236 3.8 29.3
DIS→IOU 70.5 66.6 202 3.8 29.2
IOU→DIS 71.4 66.7 166 3.8 29.2

Installation

Please refer to INSTALL.md for installation instructions.

Training and Evaluation

  • Download the crowdhuman pretrained model from xinyizhou/CenterTrack MODEL ZOO.md to models
  • prepare the data and convert it into COCO format refer to the original CenterTrack repo.
  • change the dataset root directory data_dir in opt.py
  • ablative studies for tracking_wh and tracking_ltrb approach respectively with five association method (IOU,DIS,Combined, IOU→DIS, DIS→IOU)
sh experiments/mot17val_tracking_wh.sh

sh experiments/mot17val_tracking_ltrb.sh

The trained model on MOT17val dataset using two approach are available in google drive, tracking_ltrb_70val.pth, tracking_wh_70val.pth.

  • Train on full mot17 training set and run model on the test set for evaluation
sh experiments/mot17full.sh

The trained models on full MOT17 dataset using ltrb approach is available in the google drive.

Demo comparison

Occlusion case

Original CenterTrack (left) vs CenterTrack++ (right)

Object exiting the frame

Original CenterTrack (left) vs CenterTrack++ (right)

Acknowledgement

A large part of the code is adapted from xingyizhou/CenterTrack, thanks for their wonderful inspiration.

Citation

If you find this paper and code useful in your research, please cite our papers.

@misc{yang2021multiobject,
      title={Multi-object Tracking with Tracked Object Bounding Box Association}, 
      author={Nanyang Yang and Yi Wang and Lap-Pui Chau},
      year={2021},
      eprint={2105.07901},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Nanyang Technological University Information Engineering and Media Student
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation

Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor

Ozan Oktay 1.6k Dec 30, 2022
Julia package for multiway (inverse) covariance estimation.

TensorGraphicalModels TensorGraphicalModels.jl is a suite of Julia tools for estimating high-dimensional multiway (tensor-variate) covariance and inve

Wayne Wang 3 Sep 23, 2022
Setup freqtrade/freqUI on Heroku

UNMAINTAINED - REPO MOVED TO https://github.com/p-zombie/freqtrade Creating the app git clone https://github.com/joaorafaelm/freqtrade.git && cd freqt

João 51 Aug 29, 2022
A simple implementation of Kalman filter in single object tracking

kalman-filter-in-single-object-tracking A simple implementation of Kalman filter in single object tracking https://www.bilibili.com/video/BV1Qf4y1J7D4

130 Dec 26, 2022
Code for the paper "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021)

MASTER-PyTorch PyTorch reimplementation of "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021). This projec

Wenwen Yu 255 Dec 29, 2022
Differentiable Abundance Matching With Python

shamnet Differentiable Stellar Population Synthesis Installation You can install shamnet with pip. Installation dependencies are numpy, jax, corrfunc,

5 Dec 17, 2021
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
Model serving at scale

Run inference at scale Cortex is an open source platform for large-scale machine learning inference workloads. Workloads Realtime APIs - respond to pr

Cortex Labs 7.9k Jan 06, 2023
Image-generation-baseline - MUGE Text To Image Generation Baseline

MUGE Text To Image Generation Baseline Requirements and Installation More detail

23 Oct 17, 2022
atmaCup #11 の Public 4th / Pricvate 5th Solution のリポジトリです。

#11 atmaCup 2021-07-09 ~ 2020-07-21 に行われた #11 [初心者歓迎! / 画像編] atmaCup のリポジトリです。結果は Public 4th / Private 5th でした。 フレームワークは PyTorch で、実装は pytorch-image-m

Tawara 12 Apr 07, 2022
Machine learning algorithms for many-body quantum systems

NetKet NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and

NetKet 413 Dec 31, 2022
Hack Camera, Microphone, Location, Clipboard With Just a Link. Also, Get Many Details About Victim's Device. And So On...

An Automated Tool to Hack Victim's Camera, Microphone, Location, Clipboard. Has 2 Extra Features. Version 1.1 Update Fixed Some Major Bugs Data Saving

ToxicNoob 36 Jan 07, 2023
Trafffic prediction analysis using hybrid models - Machine Learning

Hybrid Machine learning Model Clone the Repository Create a new Directory as assests and download the model from the below link Model Link To Start th

1 Feb 08, 2022
Server files for UltimateLabeling

UltimateLabeling server files Server files for UltimateLabeling. git clone https://github.com/alexandre01/UltimateLabeling_server.git cd UltimateLabel

Alexandre Carlier 4 Oct 10, 2022
An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

rydercalmdown 24 Dec 09, 2022
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
Code for generating a single image pretraining dataset

Single Image Pretraining of Visual Representations As shown in the paper A critical analysis of self-supervision, or what we can learn from a single i

Yuki M. Asano 12 Dec 19, 2022
Asynchronous Advantage Actor-Critic in PyTorch

Asynchronous Advantage Actor-Critic in PyTorch This is PyTorch implementation of A3C as described in Asynchronous Methods for Deep Reinforcement Learn

Reiji Hatsugai 38 Dec 12, 2022
TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations

TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations Requirements python 3.6 torch 1.9 numpy 1.19 Quick Start The experimen

DMIRLAB 4 Oct 16, 2022
Repo for 2021 SDD assessment task 2, by Felix, Anna, and James.

SoftwareTask2 Repo for 2021 SDD assessment task 2, by Felix, Anna, and James. File/folder structure: helloworld.py - demonstrates various map backgrou

3 Dec 13, 2022