Nixtla is an open-source time series forecasting library.

Overview

Nixtla

Nixtla is an open-source time series forecasting library.

We are helping data scientists and developers to have access to open source state-of-the-art forecasting pipelines. For that purpose, we built a complete pipeline that can be deployed in the cloud using AWS and consumed via APIs or consumed as a service. If you want to set up your own infrastructure, follow the instructions in the repository (Azure coming soon).

You can use our fully hosted version as a service through our python SDK (autotimeseries). To consume the APIs on our own infrastructure just request tokens by sending an email to [email protected] or opening a GitHub issue. We currently have free resources available for anyone interested.

We built a fully open-source time-series pipeline capable of achieving 1% of the performance in the M5 competition. Our open-source solution has a 25% better accuracy than Amazon Forecast and is 20% more accurate than fbprophet. It also performs 4x faster than Amazon Forecast and is less expensive.

To reproduce the results: Open In Colab or you can read this Medium Post.

At Nixtla we strongly believe in open-source, so we have released all the necessary code to set up your own time-series processing service in the cloud (using AWS, Azure is WIP). This repository uses continuous integration and deployment to deploy the APIs on our infrastructure.

Python SDK Basic Usage

CI python sdk

Install

PyPI

pip install autotimeseries

How to use

Check the following examples for a full pipeline:

Basic usage

import os

from autotimeseries.core import AutoTS

autotimeseries = AutoTS(bucket_name=os.environ['BUCKET_NAME'],
                        api_id=os.environ['API_ID'],
                        api_key=os.environ['API_KEY'],
                        aws_access_key_id=os.environ['AWS_ACCESS_KEY_ID'],
                        aws_secret_access_key=os.environ['AWS_SECRET_ACCESS_KEY'])

Upload dataset to S3

train_dir = '../data/m5/parquet/train'
# File with target variables
filename_target = autotimeseries.upload_to_s3(f'{train_dir}/target.parquet')
# File with static variables
filename_static = autotimeseries.upload_to_s3(f'{train_dir}/static.parquet')
# File with temporal variables
filename_temporal = autotimeseries.upload_to_s3(f'{train_dir}/temporal.parquet')

Each time series of the uploaded datasets is defined by the column item_id. Meanwhile the time column is defined by timestamp and the target column by demand. We need to pass this arguments to each call.

columns = dict(unique_id_column='item_id',
               ds_column='timestamp',
               y_column='demand')

Send the job to make forecasts

response_forecast = autotimeseries.tsforecast(filename_target=filename_target,
                                              freq='D',
                                              horizon=28,
                                              filename_static=filename_static,
                                              filename_temporal=filename_temporal,
                                              objective='tweedie',
                                              metric='rmse',
                                              n_estimators=170,
                                              **columns)

Download forecasts

autotimeseries.download_from_s3(filename='forecasts_2021-10-12_19-04-32.csv', filename_output='../data/forecasts.csv')

Forecasting Pipeline as a Service

Our forecasting pipeline is modular and built upon simple APIs:

tspreprocess

CI/CD tspreprocess Lambda CI/CD tspreprocess docker image

Time series usually contain missing values. This is the case for sales data where only the events that happened are recorded. In these cases it is convenient to balance the panel, i.e., to include the missing values to correctly determine the value of future sales.

The tspreprocess API allows you to do this quickly and easily. In addition, it allows one-hot encoding of static variables (specific to each time series, such as the product family in case of sales) automatically.

tsfeatures

CI/CD tsfeatures Lambda CI/CD tsfeatures docker image

It is usually good practice to create features of the target variable so that they can be consumed by machine learning models. This API allows users to create features at the time series level (or static features) and also at the temporal level.

The tsfeatures API is based on the tsfeatures library also developed by the Nixtla team (inspired by the R package tsfeatures) and the tsfresh library.

With this API the user can also generate holiday variables. Just enter the country of the special dates or a file with the specific dates and the API will return dummy variables of those dates for each observation in the dataset.

tsforecast

CI/CD tsforecast Lambda CI/CD tsforecast docker image

The tsforecast API is responsible for generating the time series forecasts. It receives as input the target data and can also receive static variables and time variables. At the moment, the API uses the mlforecast library developed by the Nixtla team using LightGBM as a model.

In future iterations, the user will be able to choose different Deep Learning models based on the nixtlats library developed by the Nixtla team.

tsbenchmarks

CI/CD tsbenchmarks Lambda CI/CD tsbenchmarks docker image

The tsbenchmarks API is designed to easily compare the performance of models based on time series competition datasets. In particular, the API offers the possibility to evaluate forecasts of any frequency of the M4 competition and also of the M5 competition.

These APIs, written in Python and can be consumed through an SDK also written in Python. The following diagram summarizes the structure of our pipeline:

Build your own time-series processing service using AWS

Why ?

We want to contribute to open source and help data scientists and developers to achieve great forecasting results without the need to implement complex pipelines.

How?

If you want to use our hosted version send us an email or open a github issue and ask for API Keys.

If you want to deploy Nixtla on your own AWS Cloud you will need:

  • API Gateway (to handle API calls).
  • Lambda (or some computational unit).
  • SageMaker (or some bigger computational unit).
  • ECR (to store Docker images).
  • S3 (for inputs and outputs).

You will end with an architecture that looks like the following diagram

Each call to the API executes a particular Lambda function depending on the endpoint. That particular lambda function instantiates a SageMaker job using a predefined type of instance. Finally, SageMaker reads the input data from S3 and writes the processed data to S3, using a predefined Docker image stored in ECR.

Run the API locally

  1. Create the environment using make init.
  2. Launch the app using make app.

Create AWS resources

Create S3 buckets

For each service:

  1. Create an S3 bucket. The code of each lambda function will be uploaded here.

Create ECR repositorires

For each service:

  1. Create a private repository for each service.

Lambda Function

For each service:

  1. Create a lambda function with Python 3.7 runtime.
  2. Modify the runtime setting and enter main.handler in the handler.
  3. Go to the configuration:
    • Edit the general configuration and add a timeout of 9:59.
    • Add an existing role capable of reading/writing from/to S3 and running Sagemaker services.
  4. Add the following environment variables:
    • PROCESSING_REPOSITORY_URI: ECR URI of the docker image corresponding to the service.
    • ROLE: A role capable of reading/writing from/to S3 and also running Sagemaker services.
    • INSTANCE_COUNT
    • INSTANCE_TYPE

API Gateway

  1. Create a public REST API (Regional).
  2. For each endpoint in api/main.py… add a resource.
  3. For each created method add an ANY method:
    • Select lambda function.
    • Select Use Lambda Proxy Integration.
    • Introduce the name of the lambda function linked to that resource.
    • Once the method is created select Method Request and set API key required to true.
  4. Deploy the API.

Usage plan

  1. Create a usage plan based on your needs.
  2. Add your API stage.

API Keys

  1. Generate API keys as needed.

Deployment

GitHub secrets

  1. Set the following secrets in your repo:
    • AWS_ACCESS_KEY_ID
    • AWS_SECRET_ACCESS_KEY
    • AWS_DEFAULT_REGION
Owner
Nixtla
Open Source Time Series Forecasting
Nixtla
pymc-learn: Practical Probabilistic Machine Learning in Python

pymc-learn: Practical Probabilistic Machine Learning in Python Contents: Github repo What is pymc-learn? Quick Install Quick Start Index What is pymc-

pymc-learn 196 Dec 07, 2022
Machine Learning e Data Science com Python

Machine Learning e Data Science com Python Arquivos do curso de Data Science e Machine Learning com Python na Udemy, cliqe aqui para acessá-lo. O prin

Renan Barbosa 1 Jan 27, 2022
Iris species predictor app is used to classify iris species created using python's scikit-learn, fastapi, numpy and joblib packages.

Iris Species Predictor Iris species predictor app is used to classify iris species using their sepal length, sepal width, petal length and petal width

Siva Prakash 5 Apr 05, 2022
Adaptive: parallel active learning of mathematical functions

adaptive Adaptive: parallel active learning of mathematical functions. adaptive is an open-source Python library designed to make adaptive parallel fu

741 Dec 27, 2022
MiniTorch - a diy teaching library for machine learning engineers

This repo is the full student code for minitorch. It is designed as a single repo that can be completed part by part following the guide book. It uses

1.1k Jan 07, 2023
Built on python (Mathematical straight fit line coordinates error predictor machine learning foundational model)

Sum-Square_Error-Business-Analytical-Tool- Built on python (Mathematical straight fit line coordinates error predictor machine learning foundational m

om Podey 1 Dec 03, 2021
Sequence learning toolkit for Python

seqlearn seqlearn is a sequence classification toolkit for Python. It is designed to extend scikit-learn and offer as similar as possible an API. Comp

Lars 653 Dec 27, 2022
AutoX是一个高效的自动化机器学习工具,它主要针对于表格类型的数据挖掘竞赛。 它的特点包括: 效果出色、简单易用、通用、自动化、灵活。

English | 简体中文 AutoX是什么? AutoX一个高效的自动化机器学习工具,它主要针对于表格类型的数据挖掘竞赛。 它的特点包括: 效果出色: AutoX在多个kaggle数据集上,效果显著优于其他解决方案(见效果对比)。 简单易用: AutoX的接口和sklearn类似,方便上手使用。

4Paradigm 431 Dec 28, 2022
Scikit-Garden or skgarden is a garden for Scikit-Learn compatible decision trees and forests.

Scikit-Garden or skgarden (pronounced as skarden) is a garden for Scikit-Learn compatible decision trees and forests.

260 Dec 21, 2022
Code base of KU AIRS: SPARK Autonomous Vehicle Team

KU AIRS: SPARK Autonomous Vehicle Project Check this link for the blog post describing this project and the video of SPARK in simulation and on parkou

Mehmet Enes Erciyes 1 Nov 23, 2021
A python fast implementation of the famous SVD algorithm popularized by Simon Funk during Netflix Prize

⚡ funk-svd funk-svd is a Python 3 library implementing a fast version of the famous SVD algorithm popularized by Simon Funk during the Neflix Prize co

Geoffrey Bolmier 171 Dec 19, 2022
BigDL: Distributed Deep Learning Framework for Apache Spark

BigDL: Distributed Deep Learning on Apache Spark What is BigDL? BigDL is a distributed deep learning library for Apache Spark; with BigDL, users can w

4.1k Jan 09, 2023
Python bindings for MPI

MPI for Python Overview Welcome to MPI for Python. This package provides Python bindings for the Message Passing Interface (MPI) standard. It is imple

MPI for Python 604 Dec 29, 2022
Warren - Stock Price Predictor

Web app to predict closing stock prices in real time using Facebook's Prophet time series algorithm with a multi-variate, single-step time series forecasting strategy.

Kumar Nityan Suman 153 Jan 03, 2023
Random Forest Classification for Neural Subtypes

Random Forest classifier for neural subtypes extracted from extracellular recordings from human brain organoids.

Michael Zabolocki 1 Jan 31, 2022
A complete guide to start and improve in machine learning (ML)

A complete guide to start and improve in machine learning (ML), artificial intelligence (AI) in 2021 without ANY background in the field and stay up-to-date with the latest news and state-of-the-art

Louis-François Bouchard 3.3k Jan 04, 2023
Nixtla is an open-source time series forecasting library.

Nixtla Nixtla is an open-source time series forecasting library. We are helping data scientists and developers to have access to open source state-of-

Nixtla 401 Jan 08, 2023
Evaluate on three different ML model for feature selection using Breast cancer data.

Anomaly-detection-Feature-Selection Evaluate on three different ML model for feature selection using Breast cancer data. ML models: SVM, KNN and MLP.

Tarek idrees 1 Mar 17, 2022
ml4ir: Machine Learning for Information Retrieval

ml4ir: Machine Learning for Information Retrieval | changelog Quickstart → ml4ir Read the Docs | ml4ir pypi | python ReadMe ml4ir is an open source li

Salesforce 77 Jan 06, 2023
Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models.

Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models. Solve a variety of tasks with pre-trained models or finetune them in

Backprop 227 Dec 10, 2022