Nixtla is an open-source time series forecasting library.

Overview

Nixtla

Nixtla is an open-source time series forecasting library.

We are helping data scientists and developers to have access to open source state-of-the-art forecasting pipelines. For that purpose, we built a complete pipeline that can be deployed in the cloud using AWS and consumed via APIs or consumed as a service. If you want to set up your own infrastructure, follow the instructions in the repository (Azure coming soon).

You can use our fully hosted version as a service through our python SDK (autotimeseries). To consume the APIs on our own infrastructure just request tokens by sending an email to [email protected] or opening a GitHub issue. We currently have free resources available for anyone interested.

We built a fully open-source time-series pipeline capable of achieving 1% of the performance in the M5 competition. Our open-source solution has a 25% better accuracy than Amazon Forecast and is 20% more accurate than fbprophet. It also performs 4x faster than Amazon Forecast and is less expensive.

To reproduce the results: Open In Colab or you can read this Medium Post.

At Nixtla we strongly believe in open-source, so we have released all the necessary code to set up your own time-series processing service in the cloud (using AWS, Azure is WIP). This repository uses continuous integration and deployment to deploy the APIs on our infrastructure.

Python SDK Basic Usage

CI python sdk

Install

PyPI

pip install autotimeseries

How to use

Check the following examples for a full pipeline:

Basic usage

import os

from autotimeseries.core import AutoTS

autotimeseries = AutoTS(bucket_name=os.environ['BUCKET_NAME'],
                        api_id=os.environ['API_ID'],
                        api_key=os.environ['API_KEY'],
                        aws_access_key_id=os.environ['AWS_ACCESS_KEY_ID'],
                        aws_secret_access_key=os.environ['AWS_SECRET_ACCESS_KEY'])

Upload dataset to S3

train_dir = '../data/m5/parquet/train'
# File with target variables
filename_target = autotimeseries.upload_to_s3(f'{train_dir}/target.parquet')
# File with static variables
filename_static = autotimeseries.upload_to_s3(f'{train_dir}/static.parquet')
# File with temporal variables
filename_temporal = autotimeseries.upload_to_s3(f'{train_dir}/temporal.parquet')

Each time series of the uploaded datasets is defined by the column item_id. Meanwhile the time column is defined by timestamp and the target column by demand. We need to pass this arguments to each call.

columns = dict(unique_id_column='item_id',
               ds_column='timestamp',
               y_column='demand')

Send the job to make forecasts

response_forecast = autotimeseries.tsforecast(filename_target=filename_target,
                                              freq='D',
                                              horizon=28,
                                              filename_static=filename_static,
                                              filename_temporal=filename_temporal,
                                              objective='tweedie',
                                              metric='rmse',
                                              n_estimators=170,
                                              **columns)

Download forecasts

autotimeseries.download_from_s3(filename='forecasts_2021-10-12_19-04-32.csv', filename_output='../data/forecasts.csv')

Forecasting Pipeline as a Service

Our forecasting pipeline is modular and built upon simple APIs:

tspreprocess

CI/CD tspreprocess Lambda CI/CD tspreprocess docker image

Time series usually contain missing values. This is the case for sales data where only the events that happened are recorded. In these cases it is convenient to balance the panel, i.e., to include the missing values to correctly determine the value of future sales.

The tspreprocess API allows you to do this quickly and easily. In addition, it allows one-hot encoding of static variables (specific to each time series, such as the product family in case of sales) automatically.

tsfeatures

CI/CD tsfeatures Lambda CI/CD tsfeatures docker image

It is usually good practice to create features of the target variable so that they can be consumed by machine learning models. This API allows users to create features at the time series level (or static features) and also at the temporal level.

The tsfeatures API is based on the tsfeatures library also developed by the Nixtla team (inspired by the R package tsfeatures) and the tsfresh library.

With this API the user can also generate holiday variables. Just enter the country of the special dates or a file with the specific dates and the API will return dummy variables of those dates for each observation in the dataset.

tsforecast

CI/CD tsforecast Lambda CI/CD tsforecast docker image

The tsforecast API is responsible for generating the time series forecasts. It receives as input the target data and can also receive static variables and time variables. At the moment, the API uses the mlforecast library developed by the Nixtla team using LightGBM as a model.

In future iterations, the user will be able to choose different Deep Learning models based on the nixtlats library developed by the Nixtla team.

tsbenchmarks

CI/CD tsbenchmarks Lambda CI/CD tsbenchmarks docker image

The tsbenchmarks API is designed to easily compare the performance of models based on time series competition datasets. In particular, the API offers the possibility to evaluate forecasts of any frequency of the M4 competition and also of the M5 competition.

These APIs, written in Python and can be consumed through an SDK also written in Python. The following diagram summarizes the structure of our pipeline:

Build your own time-series processing service using AWS

Why ?

We want to contribute to open source and help data scientists and developers to achieve great forecasting results without the need to implement complex pipelines.

How?

If you want to use our hosted version send us an email or open a github issue and ask for API Keys.

If you want to deploy Nixtla on your own AWS Cloud you will need:

  • API Gateway (to handle API calls).
  • Lambda (or some computational unit).
  • SageMaker (or some bigger computational unit).
  • ECR (to store Docker images).
  • S3 (for inputs and outputs).

You will end with an architecture that looks like the following diagram

Each call to the API executes a particular Lambda function depending on the endpoint. That particular lambda function instantiates a SageMaker job using a predefined type of instance. Finally, SageMaker reads the input data from S3 and writes the processed data to S3, using a predefined Docker image stored in ECR.

Run the API locally

  1. Create the environment using make init.
  2. Launch the app using make app.

Create AWS resources

Create S3 buckets

For each service:

  1. Create an S3 bucket. The code of each lambda function will be uploaded here.

Create ECR repositorires

For each service:

  1. Create a private repository for each service.

Lambda Function

For each service:

  1. Create a lambda function with Python 3.7 runtime.
  2. Modify the runtime setting and enter main.handler in the handler.
  3. Go to the configuration:
    • Edit the general configuration and add a timeout of 9:59.
    • Add an existing role capable of reading/writing from/to S3 and running Sagemaker services.
  4. Add the following environment variables:
    • PROCESSING_REPOSITORY_URI: ECR URI of the docker image corresponding to the service.
    • ROLE: A role capable of reading/writing from/to S3 and also running Sagemaker services.
    • INSTANCE_COUNT
    • INSTANCE_TYPE

API Gateway

  1. Create a public REST API (Regional).
  2. For each endpoint in api/main.py… add a resource.
  3. For each created method add an ANY method:
    • Select lambda function.
    • Select Use Lambda Proxy Integration.
    • Introduce the name of the lambda function linked to that resource.
    • Once the method is created select Method Request and set API key required to true.
  4. Deploy the API.

Usage plan

  1. Create a usage plan based on your needs.
  2. Add your API stage.

API Keys

  1. Generate API keys as needed.

Deployment

GitHub secrets

  1. Set the following secrets in your repo:
    • AWS_ACCESS_KEY_ID
    • AWS_SECRET_ACCESS_KEY
    • AWS_DEFAULT_REGION
Owner
Nixtla
Open Source Time Series Forecasting
Nixtla
DistML is a Ray extension library to support large-scale distributed ML training on heterogeneous multi-node multi-GPU clusters

DistML is a Ray extension library to support large-scale distributed ML training on heterogeneous multi-node multi-GPU clusters

27 Aug 19, 2022
Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and Python functions.

Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and many other libraries. Documenta

2.5k Jan 07, 2023
stability-selection - A scikit-learn compatible implementation of stability selection

stability-selection - A scikit-learn compatible implementation of stability selection stability-selection is a Python implementation of the stability

185 Dec 03, 2022
A collection of video resources for machine learning

Machine Learning Videos This is a collection of recorded talks at machine learning conferences, workshops, seminars, summer schools, and miscellaneous

Dustin Tran 1.5k Dec 29, 2022
A toolbox to iNNvestigate neural networks' predictions!

iNNvestigate neural networks! Table of contents Introduction Installation Usage and Examples More documentation Contributing Releases Introduction In

Maximilian Alber 1.1k Jan 05, 2023
ML Optimizers from scratch using JAX

Toy implementations of some popular ML optimizers using Python/JAX

Shreyansh Singh 38 Jul 29, 2022
Deep Survival Machines - Fully Parametric Survival Regression

Package: dsm Python package dsm provides an API to train the Deep Survival Machines and associated models for problems in survival analysis. The under

Carnegie Mellon University Auton Lab 10 Dec 30, 2022
Dive into Machine Learning

Dive into Machine Learning Hi there! You might find this guide helpful if: You know Python or you're learning it 🐍 You're new to Machine Learning You

Michael Floering 11.1k Jan 03, 2023
Arquivos do curso online sobre a estatística voltada para ciência de dados e aprendizado de máquina.

Estatistica para Ciência de Dados e Machine Learning Arquivos do curso online sobre a estatística voltada para ciência de dados e aprendizado de máqui

Renan Barbosa 1 Jan 10, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 03, 2023
learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your

BDFD 6 Nov 05, 2022
MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data

MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data. We demonstrate its use

Pachter Lab 26 Nov 29, 2022
Implementation of K-Nearest Neighbors Algorithm Using PySpark

KNN With Spark Implementation of KNN using PySpark. The KNN was used on two separate datasets (https://archive.ics.uci.edu/ml/datasets/iris and https:

Zachary Petroff 4 Dec 30, 2022
Hypernets: A General Automated Machine Learning framework to simplify the development of End-to-end AutoML toolkits in specific domains.

A General Automated Machine Learning framework to simplify the development of End-to-end AutoML toolkits in specific domains.

DataCanvas 216 Dec 23, 2022
Python based GBDT implementation

Py-boost: a research tool for exploring GBDTs Modern gradient boosting toolkits are very complex and are written in low-level programming languages. A

Sberbank AI Lab 20 Sep 21, 2022
moDel Agnostic Language for Exploration and eXplanation

moDel Agnostic Language for Exploration and eXplanation Overview Unverified black box model is the path to the failure. Opaqueness leads to distrust.

Model Oriented 1.2k Jan 04, 2023
Uses WiFi signals :signal_strength: and machine learning to predict where you are

Uses WiFi signals and machine learning (sklearn's RandomForest) to predict where you are. Even works for small distances like 2-10 meters.

Pascal van Kooten 5k Jan 09, 2023
Projeto: Machine Learning: Linguagens de Programacao 2004-2001

Projeto: Machine Learning: Linguagens de Programacao 2004-2001 Projeto de Data Science e Machine Learning de análise de linguagens de programação de 2

Victor Hugo Negrisoli 0 Jun 29, 2021
Kaggle Competition using 15 numerical predictors to predict a continuous outcome.

Kaggle-Comp.-Data-Mining Kaggle Competition using 15 numerical predictors to predict a continuous outcome as part of a final project for a stats data

moisey alaev 1 Dec 28, 2021
PyNNDescent is a Python nearest neighbor descent for approximate nearest neighbors.

PyNNDescent PyNNDescent is a Python nearest neighbor descent for approximate nearest neighbors. It provides a python implementation of Nearest Neighbo

Leland McInnes 699 Jan 09, 2023