A comprehensive repository containing 30+ notebooks on learning machine learning!

Overview

A Complete Machine Learning Package


Techniques, tools, best practices and everything you need to to learn machine learning!

toolss

This is a comprehensive repository containing 30+ notebooks on Python programming, data manipulation, data analysis, data visualization, data cleaning, classical machine learning, Computer Vision and Natural Language Processing(NLP).

All notebooks were created with the readers in mind. Every notebook starts with a high-level overview of any specific algorithm/concepts being covered. Wherever possible, visuals are used to make things clear.

Viewing and Running the Notebooks

The easiest way to view all the notebooks is to use Nbviewer.

  • Render nbviewer

If you want to play with the codes, you can use the following platforms:

  • Open In Colab

  • Launch in Deepnote

Deepnote will direct you to Intro to Machine Learning. Heads to the project side bar for more notebooks.

Tools Overview

The following are the tools that are covered in the notebooks. They are popular tools that machine learning engineers and data scientists need in one way or another and day to day.

  • Python is a high level programming language that has got a lot of popularity in the data community and with the rapid growth of the libraries and frameworks, this is a right programming language to do ML.

  • NumPy is a scientific computing tool used for array or matrix operations.

  • Pandas is a great and simple tool for analyzing and manipulating data from a variety of different sources.

  • Matplotlib is a comprehensive data visualization tool used to create static, animated, and interactive visualizations in Python.

  • Seaborn is another data visualization tool built on top of Matplotlib which is pretty simple to use.

  • Scikit-Learn: Instead of building machine learning models from scratch, Scikit-Learn makes it easy to use classical models in a few lines of code. This tool is adapted by almost the whole of the ML community and industries, from the startups to the big techs.

  • TensorFlow and Keras for neural networks: TensorFlow is a popular deep learning framework used for building models suitable for different fields such as Computer Vision and Natural Language Processing. At its backend, it uses Keras which is a high level API for building neural networks easily. TensorFlow has gained a lot of popularity in the ML community due to its complete ecosystem made of wholesome tools including TensorBoard, TF Datasets, TensorFlow Lite, TensorFlow Extended, TensorFlow.js, etc...

Outline

Part 1 - Intro to Python and Working with Data

0 - Intro to Python for Machine Learning

1 - Data Computation With NumPy

  • Creating a NumPy Array
  • Selecting Data: Indexing and Slicing An Array
  • Performing Mathematical and other Basic Operations
  • Perform Basic Statistics
  • Manipulating Data

2 - Data Manipulation with Pandas

  • Basics of Pandas
    • Series and DataFrames
    • Data Indexing and Selection
    • Dealing with Missing data
    • Basic operations and Functions
    • Aggregation Methods
    • Groupby
    • Merging, Joining and Concatenate
  • Beyond Dataframes: Working with CSV, and Excel
  • Real World Exploratory Data Analysis (EDA)

3 - Data Visualization with Matplotlib and Seaborn

4 - Real World Data - Exploratory Analysis and Data Preparation

Part 2 - Machine Learning

5 - Intro to Machine Learning

  • Intro to Machine Learning
  • Machine Learning Workflow
  • Evaluation Metrics
  • Handling Underfitting and Overfitting

6 - Classical Machine Learning with Scikit-Learn

Part 3 - Deep Learning

7 - Intro to Artificial Neural Networks and TensorFlow

8 - Deep Computer Vision with TensorFlow

9 - Natural Language Processing with TensorFlow

Used Datasets

Many of the datasets used for this repository are from the following sources:

Further Resources

Machine Learning community is very vibrant. There are many faboulous learning resources, some of which are paid or free available. Here is a list of courses that has got high community ratings. They are not listed in an order they are to be taken.

Courses

  • Machine Learning by Coursera: This course was tought by Andrew Ng. It is one of the most popular machine learning courses, it has been taken by over 4M of people. The course focuses more about the fundamentals of machine learning techniques and algorithms. It is free on Coursera.

  • Deep Learning Specialization: Also tought by Andrew Ng., Deep Learning Specialization is also a foundations based course. It teaches a decent foundations of major deep learning architectures such as convolutional neural networks and recurrent neural networks. The full course can be audited on Coursera, or watch freely on Youtube.

  • MIT Intro to Deep Learning: This course provide the foundations of deep learning in resonably short period of time. Each lecture is one hour or less, but the materials are still the best in classs. Check the course page here, and lecture videos here.

  • CS231N: Convolutional Neural Networks for Visual Recognition by Stanford: CS231N is one of the best deep learning and computer vision courses. The 2017 version was taught by Fei-Fei Li, Justin Johnson and Serena Yeung. The 2016 version was taught by Fei-Fei, Johnson and Andrej Karpathy. See 2017 lecture videos here, and other materials here.

  • Practical Deep Learning for Coders by fast.ai: This is also an intensive deep learning course pretty much the whole spectrum of deep learning architectures and techniques. The lecture videos and other resources such as notebooks on the course page.

  • Full Stack Deep Learning: While the majority of machine learning courses focuses on modelling, this course focuses on shipping machine learning systems. It teaches how to design machine learning projects, data management(storage, access, processing, versioning, and labeling), training, debugging, and deploying machine learning models. See 2021 version here and 2019 here. You can also skim through the project showcases to see the kind of the courses outcomes through learners projects.

  • NYU Deep Learning Spring 2021: Taught at NYU by Yann LeCun, Alfredo Canziani, this course is one of the most creative courses out there. The materials are presented in amazing way. Check the lecture videos here, and the course repo here.

  • CS224N: Natural Language Processing with Deep Learning by Stanford: If you are interested in Natural Language Processing, this is a great course to take. It is taught by Christopher Manning, one of the world class NLP stars. See the lecture videos here.

Books

Below is of the most awesome machine learning books.

  • The Hundred-Page Machine Learning Book: Authored by Andriy Burkov, this is one of the shortest but concise and well written book that you will ever find on the internet. You can read the book for free here.

  • Machine Learning Engineering: Also authored by Andriy Burkov, this is another great machine learning book that uncover each step of machine learning workflow, from data collection, preparation....to model serving and maintenance. The book is also free here.

  • Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Authored by Aurelion Geron, this is one of the best machine learning books. It is clearly written and full of ideas and best practices. You can ge the book here, or see its repository here.

  • Deep Learning: Authored by 3 deep learning legends, Ian Goodfellow and Yoshua Bengio and Aaron Courville, this is one of the great deep learning books that is freely available. You can get it here.

  • Deep Learning with Python: Authored by Francois Chollet, The Keras designer, this is a very comprehensive deep learning book. You can get the book here, and the book repo here.

  • Dive into Deep Learning: This is also a great deep learning book that is freely available. The book uses both PyTorch and TensorFlow. You can read the entire book here.

  • Neural Networks and Deep Learning: This is also another great deep learning online book by Michael Nielsen. You can read the entire book here.

If you are interested in more machine learning and deep learning resources, check this, this


This repository was created by Jean de Dieu Nyandwi. You can find him on:

If you find any of this thing helpful, shoot him a tweet or a mention :)

Owner
Jean de Dieu Nyandwi
Building machine learning systems!
Jean de Dieu Nyandwi
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.7k Jan 04, 2023
It is a forest of random projection trees

rpforest rpforest is a Python library for approximate nearest neighbours search: finding points in a high-dimensional space that are close to a given

Lyst 211 Dec 29, 2022
ml4ir: Machine Learning for Information Retrieval

ml4ir: Machine Learning for Information Retrieval | changelog Quickstart → ml4ir Read the Docs | ml4ir pypi | python ReadMe ml4ir is an open source li

Salesforce 77 Jan 06, 2023
A linear regression model for house price prediction

Linear_Regression_Model A linear regression model for house price prediction. This code is using these packages, so please make sure your have install

ShawnWang 1 Nov 29, 2021
Scikit learn library models to account for data and concept drift.

liquid_scikit_learn Scikit learn library models to account for data and concept drift. This python library focuses on solving data drift and concept d

7 Nov 18, 2021
Python factor analysis library (PCA, CA, MCA, MFA, FAMD)

Prince is a library for doing factor analysis. This includes a variety of methods including principal component analysis (PCA) and correspondence anal

Max Halford 915 Dec 31, 2022
A library of sklearn compatible categorical variable encoders

Categorical Encoding Methods A set of scikit-learn-style transformers for encoding categorical variables into numeric by means of different techniques

2.1k Jan 07, 2023
Library for machine learning stacking generalization.

stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab

114 Jul 19, 2022
Distributed Computing for AI Made Simple

Project Home Blog Documents Paper Media Coverage Join Fiber users email list Uber Open Source 997 Dec 30, 2022

Implemented four supervised learning Machine Learning algorithms

Implemented four supervised learning Machine Learning algorithms from an algorithmic family called Classification and Regression Trees (CARTs), details see README_Report.

Teng (Elijah) Xue 0 Jan 31, 2022
Software Engineer Salary Prediction

Based on 2021 stack overflow data, this machine learning web application helps one predict the salary based on years of experience, level of education and the country they work in.

Jhanvi Mimani 1 Jan 08, 2022
A simple application that calculates the probability distribution of a normal distribution

probability-density-function General info An application that calculates the probability density and cumulative distribution of a normal distribution

1 Oct 25, 2022
Simplify stop motion animation with machine learning.

Simplify stop motion animation with machine learning.

Nick Bild 25 Sep 15, 2022
This repo implements a Topological SLAM: Deep Visual Odometry with Long Term Place Recognition (Loop Closure Detection)

This repo implements a topological SLAM system. Deep Visual Odometry (DF-VO) and Visual Place Recognition are combined to form the topological SLAM system.

Best of Australian Centre for Robotic Vision (ACRV) 32 Jun 23, 2022
Combines Bayesian analyses from many datasets.

PosteriorStacker Combines Bayesian analyses from many datasets. Introduction Method Tutorial Output plot and files Introduction Fitting a model to a d

Johannes Buchner 19 Feb 13, 2022
Predicting India’s COVID-19 Third Wave with LSTM

Predicting India’s COVID-19 Third Wave with LSTM Complete project of predicting new COVID-19 cases in the next 90 days with LSTM India is seeing a ste

Samrat Dutta 4 Jan 27, 2022
A comprehensive repository containing 30+ notebooks on learning machine learning!

A comprehensive repository containing 30+ notebooks on learning machine learning!

Jean de Dieu Nyandwi 3.8k Jan 09, 2023
The unified machine learning framework, enabling framework-agnostic functions, layers and libraries.

The unified machine learning framework, enabling framework-agnostic functions, layers and libraries. Contents Overview In a Nutshell Where Next? Overv

Ivy 8.2k Dec 31, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
Interactive Web App with Streamlit and Scikit-learn that applies different Classification algorithms to popular datasets

Interactive Web App with Streamlit and Scikit-learn that applies different Classification algorithms to popular datasets Datasets Used: Iris dataset,

Samrat Mitra 2 Nov 18, 2021