A custom DeepStack model for detecting 16 human actions.

Overview

DeepStack_ActionNET

This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API for detecting 16 human actions present in the ActionNET Dataset dataset. Also included in this repository is that dataset with the YOLO annotations.

>> Watch Video Demo

  • Download DeepStack Model and Dataset
  • Create API and Detect Objects
  • Discover more Custom Models
  • Train your own Model

Download DeepStack Model and Dataset

You can download the pre-trained DeepStack_ActionNET model and the annotated dataset via the links below.

Create API and Detect Actions

The Trained Model can detect the following actions in images and videos.

  • calling
  • clapping
  • cycling
  • dancing
  • drinking
  • eating
  • fighting
  • hugging
  • kissing
  • laughing
  • listening-to-music
  • running
  • sitting
  • sleeping
  • texting
  • using-laptop

To start detecting, follow the steps below

  • Install DeepStack: Install DeepStack AI Server with instructions on DeepStack's documentation via https://docs.deepstack.cc

  • Download Custom Model: Download the trained custom model actionnetv2.pt from this GitHub release. Create a folder on your machine and move the downloaded model to this folder.

    E.g A path on Windows Machine C\Users\MyUser\Documents\DeepStack-Models, which will make your model file path C\Users\MyUser\Documents\DeepStack-Models\actionnet.pt

  • Run DeepStack: To run DeepStack AI Server with the custom ActionNET model, run the command that applies to your machine as detailed on DeepStack's documentation linked here.

    E.g

    For a Windows version, you run the command below

    deepstack --MODELSTORE-DETECTION "C\Users\MyUser\Documents\DeepStack-Models" --PORT 80

    For a Linux machine

    sudo docker run -v /home/MyUser/Documents/DeepStack-Models -p 80:5000 deepquestai/deepstack

    Once DeepStack runs, you will see a log like the one below in your Terminal/Console

    That means DeepStack is running your custom actionnet.pt model and now ready to start detecting actions images via the API endpoint http://localhost:80/v1/vision/custom/actionnet or http://your_machine_ip:80/v1/vision/custom/actionnet

  • Detect actions in image: You can detect objects in an image by sending a POST request to the url mentioned above with the paramater image set to an image using any proggramming language or with a tool like POSTMAN. For the purpose of this repository, we have provided a sample Python code below.

    • A sample image can be found in images/test.jpg of this repository

    • Install Python and install the DeepStack Python SDK via the command below

      pip install deepstack_sdk
    • Run the Python file detect.py in this repository.

      python detect.py
    • After the code runs, you will find a new image in images/test_detected.jpg with the detection visualized, with the following results printed in the Terminal/Console.

      Name: dancing
      Confidence: 0.91482425
      x_min: 270
      x_max: 516
      y_min: 18
      y_max: 480
      -----------------------
      

    • You can try running action detection for other images.

Discover more Custom Models

For more custom DeepStack models that has been trained and ready to use, visit the Custom Models sample page on DeepStack's documentation https://docs.deepstack.cc/custom-models-samples/ .

Train your own Model

If you will like to train a custom model yourself, follow the instructions below.

  • Prepare and Annotate: Collect images on and annotate object(s) you plan to detect as detailed here
  • Train your Model: Train the model as detailed here
You might also like...
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

NExT-QA We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2

Episodic Transformer (E.T.) is a novel attention-based architecture for vision-and-language navigation. E.T. is based on a multimodal transformer that encodes language inputs and the full episode history of visual observations and actions.
🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available actions
An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available actions

Agar.io_Q-Learning_AI An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available act

Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label.
Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label.

Tensorflow-Mobile-Generic-Object-Localizer Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label. Ori

Python TFLite scripts for detecting objects of any class in an image without knowing their label.
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples / ICLR 2018

Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples This project is for the paper "Training Confidence-Calibrated Clas

CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images
CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images

Code and result about CCAFNet(IEEE TMM) 'CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images' IEE

Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis"

Beyond the Spectrum Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis" by Yang He, Ning Yu, Margret Keu

Comments
  • How to download a Custom Model action net v2.pt in Deepstack Server Docker?

    How to download a Custom Model action net v2.pt in Deepstack Server Docker?

    Tell me how to load a custom action network model correctly v2.pt in the Deepstack server docker? Did I do the right thing?

    DeepStack: Version 2021.09.01 I created the /model store/detection folders and threw the action net file there v2.pt image

    After the reboot, I got a v1/vision/custom/action net v2 entry in the logs. Did I do the right thing? It just confuses me that there is a v1/vision/custom/action net v2 entry in the logs, and the rest are written like this.

    /v1/vision/face
    /v1/vision/face/recognize
    ....
    

    image

    Is it necessary to enter here as in the case of face and object recognition? image image

    opened by DivanX10 0
Releases(v2)
  • v2(Aug 26, 2021)

    Version 2 of the DeepStack Custom Model for object detection API to detect human actions in images and videos. It detects the following actions

    • calling
    • clapping
    • cycling
    • dancing
    • drinking
    • eating
    • fighting
    • hugging
    • kissing
    • laughing
    • listening-to-music
    • running
    • sitting
    • sleeping
    • texting
    • using-laptop

    Download the model actionnetv2.pt from the Assets section (below) in this release.

    This Model is a YOLOv5x DeepStack custom model and that was trained for 150 epochs, generating a best model with the following evaluation result.

    [email protected]: 0.995 [email protected]: 0.913

    Source code(tar.gz)
    Source code(zip)
    actionnetv2.pt(169.41 MB)
  • v1(Aug 14, 2021)

    A DeepStack Custom Model for object detection API to detect human actions in images and videos. It detects the following actions

    • calling
    • clapping
    • cycling
    • dancing
    • drinking
    • eating
    • fighting
    • hugging
    • kissing
    • laughing
    • listening-to-music
    • running
    • sitting
    • sleeping
    • texting
    • using-laptop

    Download the model actionnet.pt from the Assets section (below) in this release.

    This Model is a YOLOv5x DeepStack custom model and that was trained for 150 epochs, generating a best model with the following evaluation result.

    [email protected]: 0.9858 [email protected]: 0.8051

    Source code(tar.gz)
    Source code(zip)
    actionnet.pt(169.41 MB)
Owner
MOSES OLAFENWA
Software Engineer @Microsoft , A self-Taught computer programmer, Deep Learning, Computer Vision Researcher and Developer. Creator of ImageAI.
MOSES OLAFENWA
JupyterLite demo deployed to GitHub Pages 🚀

JupyterLite Demo JupyterLite deployed as a static site to GitHub Pages, for demo purposes. ✨ Try it in your browser ✨ ➡️ https://jupyterlite.github.io

JupyterLite 223 Jan 04, 2023
Torch implementation of "Enhanced Deep Residual Networks for Single Image Super-Resolution"

NTIRE2017 Super-resolution Challenge: SNU_CVLab Introduction This is our project repository for CVPR 2017 Workshop (2nd NTIRE). We, Team SNU_CVLab, (B

Bee Lim 625 Dec 30, 2022
PyTorch Implementation of CycleGAN and SSGAN for Domain Transfer (Minimal)

MNIST-to-SVHN and SVHN-to-MNIST PyTorch Implementation of CycleGAN and Semi-Supervised GAN for Domain Transfer. Prerequites Python 3.5 PyTorch 0.1.12

Yunjey Choi 401 Dec 30, 2022
Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Haoliang Sun 3 Sep 03, 2022
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python

deepface Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid

Kushal Shingote 2 Feb 10, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang News 2021.12.5 Release Deep

145 Jan 05, 2023
Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Wilson 1.7k Dec 30, 2022
A Re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"

What is This This is a simple re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"(1). Only Sections

102 Dec 14, 2022
LETR: Line Segment Detection Using Transformers without Edges

LETR: Line Segment Detection Using Transformers without Edges Introduction This repository contains the official code and pretrained models for Line S

mlpc-ucsd 157 Jan 06, 2023
CausaLM: Causal Model Explanation Through Counterfactual Language Models

CausaLM: Causal Model Explanation Through Counterfactual Language Models Authors: Amir Feder, Nadav Oved, Uri Shalit, Roi Reichart Abstract: Understan

Amir Feder 39 Jul 10, 2022
Single-Shot Motion Completion with Transformer

Single-Shot Motion Completion with Transformer 👉 [Preprint] 👈 Abstract Motion completion is a challenging and long-discussed problem, which is of gr

FuxiCV 78 Dec 29, 2022
A mini-course offered to Undergrad chemistry students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 19 Dec 19, 2022
Simulating an AI playing 2048 using the Expectimax algorithm

2048-expectimax Simulating an AI playing 2048 using the Expectimax algorithm The base game engine uses code from here. The AI player is modeled as a m

Subha Ramesh 2 Jan 31, 2022
BookMyShowPC - Movie Ticket Reservation App made with Tkinter

Book My Show PC What is this? Movie Ticket Reservation App made with Tkinter. Tk

The Nithin Balaji 3 Dec 09, 2022
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

🍐 quince Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding 🍐 Installation $ git clone

Andrew Jesson 19 Jun 23, 2022
Road Crack Detection Using Deep Learning Methods

Road-Crack-Detection-Using-Deep-Learning-Methods This is my Diploma Thesis ¨Road Crack Detection Using Deep Learning Methods¨ under the supervision of

Aggelos Katsaliros 3 May 03, 2022
(NeurIPS 2020) Wasserstein Distances for Stereo Disparity Estimation

Wasserstein Distances for Stereo Disparity Estimation Accepted in NeurIPS 2020 as Spotlight. [Project Page] Wasserstein Distances for Stereo Disparity

Divyansh Garg 92 Dec 12, 2022
A python module for scientific analysis of 3D objects based on VTK and Numpy

A lightweight and powerful python module for scientific analysis and visualization of 3d objects.

Marco Musy 1.5k Jan 06, 2023