Project 4 Cloud DevOps Nanodegree

Overview

CircleCI

Project Overview

In this project, you will apply the skills you have acquired in this course to operationalize a Machine Learning Microservice API.

You are given a pre-trained, sklearn model that has been trained to predict housing prices in Boston according to several features, such as average rooms in a home and data about highway access, teacher-to-pupil ratios, and so on. You can read more about the data, which was initially taken from Kaggle, on the data source site. This project tests your ability to operationalize a Python flask app—in a provided file, app.py—that serves out predictions (inference) about housing prices through API calls. This project could be extended to any pre-trained machine learning model, such as those for image recognition and data labeling.

Project Tasks

Your project goal is to operationalize this working, machine learning microservice using kubernetes, which is an open-source system for automating the management of containerized applications. In this project you will:

  • Test your project code using linting
  • Complete a Dockerfile to containerize this application
  • Deploy your containerized application using Docker and make a prediction
  • Improve the log statements in the source code for this application
  • Configure Kubernetes and create a Kubernetes cluster
  • Deploy a container using Kubernetes and make a prediction
  • Upload a complete Github repo with CircleCI to indicate that your code has been tested

You can find a detailed project rubric, here.

The final implementation of the project will showcase your abilities to operationalize production microservices.


Setup the Environment

  • Create a virtualenv with Python 3.7 and activate it. Refer to this link for help on specifying the Python version in the virtualenv.
python3 -m pip install --user virtualenv
# You should have Python 3.7 available in your host. 
# Check the Python path using `which python3`
# Use a command similar to this one:
python3 -m virtualenv --python=<path-to-Python3.7> .devops
source .devops/bin/activate
  • Run make install to install the necessary dependencies

Running app.py

  1. Standalone: python app.py
  2. Run in Docker: ./run_docker.sh
  3. Run in Kubernetes: ./run_kubernetes.sh

Kubernetes Steps

  • Setup and Configure Docker locally
  • Setup and Configure Kubernetes locally
  • Create Flask app in Container
  • Run via kubectl Complete the Dockerfile Specify a working directory. Copy the app.py source code to that directory Install any dependencies in requirements.txt (do not delete the commented # hadolint ignore statement). Expose a port when the container is created; port 80 is standard. Specify that the app runs at container launch.

python3 -m venv ~/.devops source ~/.devops/bin/activate $ make lint

Run a Container & Make a Prediction Build the docker image from the Dockerfile; it is recommended that you use an optional --tag parameter as described in the build documentation. List the created docker images (for logging purposes). Run the containerized Flask app; publish the container’s port (80) to a host port (8080). Run the container using the run_docker.sh script created before following the steps above: $ . ./run_docker.sh After running the container we can able to run the prediction using the make_prediction.sh script:

$ . ./make_prediction.sh

Improve Logging & Save Output Add a prediction log statement Run the container and make a prediction to check the logs $ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES a7d374ad73a6 api "/bin/bash" 36 minutes ago Exited (0) 28 minutes ago exciting_visvesvaraya 89fd55581a44 api "make run-app" 44 minutes ago Exited (2) 44 minutes ago brave_poitras f0b0ece5a9b5 api "make run-app" 46 minutes ago Exited (2) 46 minutes ago elated_brahmagupta a6fcd4749e44 api "make run-app" 48 minutes ago Exited (2) 48 minutes ago dreamy_agnesi

Upload the Docker Image Create a Docker Hub account Built the docker container with this command docker build --tag=<your_tag> . (Don't forget the tag name) Define a dockerpath which is <docker_hub_username>/<project_name> Authenticate and tag image Push your docker image to the dockerpath After complete all steps run the upload using the upload_docker.sh script:

$ . ./upload_docker.sh

Configure Kubernetes to Run Locally Install Kubernetes Install Minikube

Deploy with Kubernetes and Save Output Logs Define a dockerpath which will be “/path”, this should be the same name as your uploaded repository (the same as in upload_docker.sh) Run the docker container with kubectl; you’ll have to specify the container and the port List the kubernetes pods Forward the container port to a host port, using the same ports as before

After complete all steps run the kubernetes using run_kubernetes.sh script:

$ . ./run_kubernetes.sh After running the kubernete make a prediction using the make_prediction.sh script as we do in the second task.

Delete Cluster minikube delete

CircleCI Integration To create the file and folder on GitHub, click the Create new file button on the repo page and type .circleci/config.yml. You should now have in front of you a blank config.yml file in a .circleci folder.

Then you can paste the text from this yaml file into your file, and commit the change to your repository.

It may help to reference this CircleCI blog post on Github integration.

HXVM - Check Host compatibility with the Virtual Machines

HXVM - Check Host compatibility with the Virtual Machines. Features | Installation | Usage Features Takes input from user to compare how many VMs they

Aman Srivastava 4 Oct 15, 2022
This is a tool to develop, build and test PHP extensions in Docker containers.

Develop, Build and Test PHP Extensions This is a tool to develop, build and test PHP extensions in Docker containers. Installation Clone this reposito

Suora GmbH 10 Oct 22, 2022
Pulumi - Developer-First Infrastructure as Code. Your Cloud, Your Language, Your Way 🚀

Pulumi's Infrastructure as Code SDK is the easiest way to create and deploy cloud software that use containers, serverless functions, hosted services,

Pulumi 14.7k Jan 08, 2023
This project shows how to serve an TF based image classification model as a web service with TFServing, Docker, and Kubernetes(GKE).

Deploying ML models with CPU based TFServing, Docker, and Kubernetes By: Chansung Park and Sayak Paul This project shows how to serve a TensorFlow ima

Chansung Park 104 Dec 28, 2022
IP address management (IPAM) and data center infrastructure management (DCIM) tool.

NetBox is an IP address management (IPAM) and data center infrastructure management (DCIM) tool. Initially conceived by the network engineering team a

NetBox Community 11.8k Jan 07, 2023
SSH to WebSockets Bridge

wssh wssh is a SSH to WebSockets Bridge that lets you invoke a remote shell using nothing but HTTP. The client connecting to wssh doesn't need to spea

Andrea Luzzardi 1.3k Dec 25, 2022
A colony of interacting processes

NColony Infrastructure for running "colonies" of processes. Hacking $ tox Should DTRT -- if it passes, it means unit tests are passing, and 100% cover

23 Apr 04, 2022
Visual disk-usage analyser for docker images

whaler What? A command-line tool for visually investigating the disk usage of docker images Why? Large images are slow to move and expensive to store.

Treebeard Technologies 194 Sep 01, 2022
This repository contains useful docker-swarm-tools.

docker-swarm-tools This repository contains useful docker-swarm-tools. swarm-guardian This Docker image is intended to be used in a multihost docker e

NeuroForge GmbH & Co. KG 4 Jan 12, 2022
More than 130 check plugins for Icinga and other Nagios-compatible monitoring applications. Each plugin is a standalone command line tool (written in Python) that provides a specific type of check.

Python-based Monitoring Check Plugins Collection This Enterprise Class Check Plugin Collection offers a package of more than 130 Python-based, Nagios-

Linuxfabrik 119 Dec 27, 2022
Build and Push docker image in Python (luigi + docker-py)

Docker build images workflow in Python Since docker hub stopped building images for free accounts, I've been looking for another way to do it. I could

Fabien D. 2 Dec 15, 2022
Azure plugins for Feast (FEAture STore)

Feast on Azure This project provides resources to enable running a feast feature store on Azure. Feast Azure Provider The Feast Azure provider acts li

Microsoft Azure 70 Dec 31, 2022
Ralph is the CMDB / Asset Management system for data center and back office hardware.

Ralph Ralph is full-featured Asset Management, DCIM and CMDB system for data centers and back offices. Features: keep track of assets purchases and th

Allegro Tech 1.9k Jan 01, 2023
Some automation scripts to setup a deployable development database server (with docker).

Postgres-Docker Database Initializer This is a simple automation script that will create a Docker Postgres database with a custom username, password,

Pysogge 1 Nov 11, 2021
Kube kombu - Running kombu consumers with support of liveness probe for kubernetes

Setup and Running Kombu consumers Steps: Install python 3.9 or greater on your s

Anmol Porwal 5 Dec 10, 2022
Google Kubernetes Engine (GKE) with a Snyk Kubernetes controller installed/configured for Snyk App

Google Kubernetes Engine (GKE) with a Snyk Kubernetes controller installed/configured for Snyk App This example provisions a Google Kubernetes Engine

Pas Apicella 2 Feb 09, 2022
Inferoxy is a service for quick deploying and using dockerized Computer Vision models.

Inferoxy is a service for quick deploying and using dockerized Computer Vision models. It's a core of EORA's Computer Vision platform Vision Hub that runs on top of AWS EKS.

94 Oct 10, 2022
Tencent Yun tools with python

Tencent_Yun_tools 使用 python3.9 + 腾讯云 AccessKey 利用工具 使用之前请先填写config.ini配置文件 Usage python3 Tencent_rce.py -h Scanner python3 Tencent_rce.py -s 生成CSV

<img src="> 13 Dec 20, 2022
Honcho: a python clone of Foreman. For managing Procfile-based applications.

___ ___ ___ ___ ___ ___ /\__\ /\ \ /\__\ /\ \ /\__\ /\

Nick Stenning 1.5k Jan 03, 2023
MagTape is a Policy-as-Code tool for Kubernetes that allows for evaluating Kubernetes resources against a set of defined policies to inform and enforce best practice configurations.

MagTape is a Policy-as-Code tool for Kubernetes that allows for evaluating Kubernetes resources against a set of defined policies to inform and enforce best practice configurations. MagTape includes

T-Mobile 143 Dec 27, 2022