The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing".

Overview

BMC

The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing".

BibTex entry available here.

BMC (BPF Memory Cache) is an in-kernel cache for memcached. It enables runtime, crash-safe extension of the Linux kernel to process specific memcached requests before the execution of the standard network stack. BMC does not require modification of neither the Linux kernel nor the memcached application. Running memcached with BMC improves throughput by up to 18x compared to the vanilla memcached application.

Requirements

Linux kernel v5.3 or higher is required to run BMC.

Other software dependencies are required to build BMC and Memcached-SR (see Building BMC and Building Memcached-SR).

Build instructions

Building BMC

BMC must be compiled with libbpf and other header files obtained from kernel sources. The project does not include the kernel sources, but the kernel-src-download.sh and kernel-src-prepare.sh scripts automate the download of the kernel sources and prepare them for the compilation of BMC.

These scripts require the following software to be installed:

gpg curl tar xz make gcc flex bison libssl-dev libelf-dev

The project uses llvm and clang version 9 to build BMC, but more recent versions might work as well:

llvm-9 clang-9

Note that libelf-dev is also required to build libbpf and BMC.

With the previous software installed, BMC can be built with the following:

$ ./kernel-src-download.sh
$ ./kernel-src-prepare.sh
$ cd bmc && make

After BMC has been successfully built, kernel sources can be removed by running the kernel-src-remove.sh script from the project root.

Building Memcached-SR

Memcached-SR is based on memcached v1.5.19. Building it requires the following software:

clang-9 (or gcc-9) automake libevent-dev

Either clang-9 or gcc-9 is required in order to compile memcached without linking issues. Depending on your distribution, you might also need to use the -Wno-deprecated-declarations compilation flag.

Memcached-SR can be built with the following:

$ cd memcached-sr 
$ ./autogen.sh
$ CC=clang-9 CFLAGS='-DREUSEPORT_OPT=1 -Wno-deprecated-declarations' ./configure && make

The memcached binary will be located in the memcached-sr directory.

Further instructions

TC egress hook

BMC doesn't attach the tx_filter eBPF program to the egress hook of TC, it needs to be attached manually.

To do so, you first need to make sure that the BPF is mounted, if it isn't you can mount it with the following command:

# mount -t bpf none /sys/fs/bpf/

Once BMC is running and the tx_filter program has been pinned to /sys/fs/bpf/bmc_tx_filter, you can attach it using the tc command line:

# tc qdisc add dev 
   
     clsact
   
# tc filter add dev 
   
     egress bpf object-pinned /sys/fs/bpf/bmc_tx_filter
   

After you are done using BMC, you can detach the program with these commands:

# tc filter del dev 
   
     egress
   
# tc qdisc del dev 
   
     clsact
   

And unpin the program with # rm /sys/fs/bpf/bmc_tx_filter

License

Files under the bmc directory are licensed under the GNU Lesser General Public License version 2.1.

Files under the memcached-sr directory are licensed under the BSD-3-Clause BSD license.

Cite this work

BibTex:

@inproceedings{265047,
	title        = {{BMC}: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing},
	author       = {Yoann Ghigoff and Julien Sopena and Kahina Lazri and Antoine Blin and Gilles Muller},
	year         = 2021,
	month        = apr,
	booktitle    = {18th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 21)},
	publisher    = {{USENIX} Association},
	pages        = {487--501},
	isbn         = {978-1-939133-21-2},
	url          = {https://www.usenix.org/conference/nsdi21/presentation/ghigoff}
}
Owner
Orange
Open Source by Orange
Orange
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Dec 29, 2022
This application explain how we can easily integrate Deepface framework with Python Django application

deepface_suite This application explain how we can easily integrate Deepface framework with Python Django application install redis cache install requ

Mohamed Naji Aboo 3 Apr 18, 2022
Automatic Attendance marker for LMS Practice School Division, BITS Pilani

LMS Attendance Marker Automatic script for lazy people to mark attendance on LMS for Practice School 1. Setup Add your LMS credentials and time slot t

Nihar Bansal 3 Jun 12, 2021
Pun Detection and Location

Pun Detection and Location “The Boating Store Had Its Best Sail Ever”: Pronunciation-attentive Contextualized Pun Recognition Yichao Zhou, Jyun-yu Jia

lawson 3 May 13, 2022
PFLD pytorch Implementation

PFLD-pytorch Implementation of PFLD A Practical Facial Landmark Detector by pytorch. 1. install requirements pip3 install -r requirements.txt 2. Datas

zhaozhichao 669 Jan 02, 2023
Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]

Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral] Learning to Disambiguate Strongly In

Zicong Fan 40 Dec 22, 2022
NER for Indian languages

CL-NERIL: A Cross-Lingual Model for NER in Indian Languages Code for the paper - https://arxiv.org/abs/2111.11815 Setup Setup a virtual environment Th

Akshara P 0 Nov 24, 2021
RNN Predict Street Commercial Vitality

RNN-for-Predicting-Street-Vitality Code and dataset for Predicting the Vitality of Stores along the Street based on Business Type Sequence via Recurre

Zidong LIU 1 Dec 15, 2021
基于DouZero定制AI实战欢乐斗地主

DouZero_For_Happy_DouDiZhu: 将DouZero用于欢乐斗地主实战 本项目基于DouZero 环境配置请移步项目DouZero 模型默认为WP,更换模型请修改start.py中的模型路径 运行main.py即可 SL (baselines/sl/): 基于人类数据进行深度学习

1.5k Jan 08, 2023
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

Zhiqiang Shen 16 Nov 04, 2020
Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

47 Jun 30, 2022
Ejemplo Algoritmo Viterbi - Example of a Viterbi algorithm applied to a hidden Markov model on DNA sequence

Ejemplo Algoritmo Viterbi Ejemplo de un algoritmo Viterbi aplicado a modelo ocul

Mateo Velásquez Molina 1 Jan 10, 2022
CvT2DistilGPT2 is an encoder-to-decoder model that was developed for chest X-ray report generation.

CvT2DistilGPT2 Improving Chest X-Ray Report Generation by Leveraging Warm-Starting This repository houses the implementation of CvT2DistilGPT2 from [1

The Australian e-Health Research Centre 21 Dec 28, 2022
Plenoxels: Radiance Fields without Neural Networks, Code release WIP

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Alex Yu 2.3k Dec 30, 2022
Boston House Prediction Valuation Tool

Boston-House-Prediction-Valuation-Tool From Below Anlaysis The Valuation Tool is Designed Correlation Matrix Regrssion Analysis Between Target Vs Pred

0 Sep 09, 2022
LAVT: Language-Aware Vision Transformer for Referring Image Segmentation

LAVT: Language-Aware Vision Transformer for Referring Image Segmentation Where we are ? 12.27 目前和原论文仍有1%左右得差距,但已经力压很多SOTA了 ckpt__448_epoch_25.pth mIoU

zichengsaber 60 Dec 11, 2022
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022
用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本和PARL(paddle)版本

用强化学习玩合成大西瓜 代码地址:https://github.com/Sharpiless/play-daxigua-using-Reinforcement-Learning 用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本、PARL(paddle)版本和pytorch版本

72 Dec 17, 2022
Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp

<a href=[email protected]"> 3 Oct 25, 2022
RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

RaftMLP RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality? By Yuki Tatsunami and Masato Taki (Rikkyo University) [arxiv]

Okojo 20 Aug 31, 2022